Integral representations for the Dirichlet L-functions and their expansions in Meixner-Pollaczek polynomials and rising factorials
نویسنده
چکیده
In this article we provide integral representations for the Dirichlet beta and Riemann zeta functions, which are obtained by combining Mellin transform with the fractional Fourier transform. As an application of these integral formulas we derive tractable expansions of these L-functions in the series of Meixner-Pollaczek polynomials and rising factorials.
منابع مشابه
The Askey Scheme for Hypergeometric Orthogonal Polynomials Viewed from Asymptotic Analysis
Many limits are known for hypergeometric orthogonal polynomials that occur in the Askey scheme. We show how asymptotic representations can be derived by using the generating functions of the polynomials. For example, we discuss the asymptotic representation of the Meixner-Pollaczek, Jacobi, Meixner, and Krawtchouk polynomials in terms of Laguerre polynomials.
متن کاملClassical Orthogonal Polynomials as Moments
We show that the Meixner, Pollaczek, Meixner-Pollaczek and Al-Salam-Chihara polynomials, in certain normalization, are moments of probability measures. We use this fact to derive bilinear and multilinear generating functions for some of these polynomials. We also comment on the corresponding formulas for the Charlier, Hermite and Laguerre polynomials. Running Title: Generating Functions
متن کاملWeighted Derangements and the Linearization Coefficients of Orthogonal Sheffer Polynomials
The present paper is devoted to a systematic study of the combinatorial interpretations of the moments and the linearization coefficients of the orthogonal Sheffer polynomials, i.e., Hermite, Charlier, Laguerre, Meixner and Meixner-Pollaczek polynomials. In particular, we show that Viennot's combinatorial interpretations of the moments can be derived directly from their classical analytical exp...
متن کاملSpectral Theory and Special Functions
A short introduction to the use of the spectral theorem for self-adjoint operators in the theory of special functions is given. As the first example, the spectral theorem is applied to Jacobi operators, i.e. tridiagonal operators, on l(Z≥0), leading to a proof of Favard’s theorem stating that polynomials satisfying a three-term recurrence relation are orthogonal polynomials. We discuss the link...
متن کاملMeixner Functions and Polynomials Related to Lie Algebra Representations
The decomposition of the tensor product of a positive and a negative discrete series representation of the Lie algebra su(1, 1) is a direct integral over the principal unitary series representations. In the decomposition discrete terms can occur, and the discrete terms are a finite number of discrete series representations or one complementary series representation. The interpretation of Meixne...
متن کامل