On the number of graphs not containing K3,3 as a minor

نویسندگان

  • Stefanie Gerke
  • Omer Giménez
  • Marc Noy
  • Andreas Weißl
چکیده

We derive precise asymptotic estimates for the number of labelled graphs not containing K3,3 as a minor, and also for those which are edge maximal. Additionally, we establish limit laws for parameters in random K3,3-minor-free graphs, like the expected number of edges. To establish these results, we translate a decomposition for the corresponding graph class into equations for generating functions and use singularity analysis. We also find a precise estimate for the number of graphs not containing the graph K3,3 plus an edge as a minor.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Number of Graphs Not Containing K3, 3 as a Minor

We derive precise asymptotic estimates for the number of labelled graphs not containing K3,3 as a minor, and also for those which are edge maximal. Additionally, we establish limit laws for parameters in random K3,3-minor-free graphs, like the number of edges. To establish these results, we translate a decomposition for the corresponding graphs into equations for generating functions and use si...

متن کامل

Graphs with no K3,3 Minor Containing a Fixed Edge

It is well known that every cycle of a graph must intersect every cut in an even number of edges. For planar graphs, Ford and Fulkerson proved that, for any edge e, there exists a cycle containing e that intersects every minimal cut containing e in exactly two edges. The main result of this paper generalizes this result to any nonplanar graph G provided G does not have a K 3,3 minor containing ...

متن کامل

NC Algorithms for Perfect Matching and Maximum Flow in One-Crossing-Minor-Free Graphs

In 1988, Vazirani gave an NC algorithm for computing the number of perfect matchings in K3,3-minor-free graphs by building on Kasteleyn’s scheme for planar graphs, and stated that this “opens up the possibility of obtaining an NC algorithm for finding a perfect matching in K3,3-free graphs.” In this paper, we finally settle this 30-year-old open problem. Building on the recent breakthrough resu...

متن کامل

1 Every longest circuit of a 3-connected, K3,3-minor free graph has a chord

Carsten Thomassen conjectured that every longest circuit in a 3-connected graph has a chord. We prove the conjecture for graphs having no K3,3 minor, and consequently for planar graphs. Carsten Thomassen made the following conjecture [1, 7], where a circuit denotes a connected 2-regular graph: Conjecture 1 (Thomassen) Every longest circuit of a 3-connected graph has a chord. That conjecture has...

متن کامل

Every longest circuit of a 3-connected, K3, 3-minor free graph has a chord

Carsten Thomassen conjectured that every longest circuit in a 3-connected graph has a chord. We prove the conjecture for graphs having no K3,3 minor, and consequently for planar graphs. Carsten Thomassen made the following conjecture [1, 7]: Conjecture 1 (Thomassen) Every longest circuit of a 3-connected graph has a chord. That conjecture has been proved for planar graphs with minimum degree at...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008