Tunable Pseudocapacitance in 3D TiO2-δ Nanomembranes Enabling Superior Lithium Storage Performance.
نویسندگان
چکیده
Nanostructured TiO2 of different polymorphs, mostly prepared by hydro/solvothermal methods, have been extensively studied for more than a decade as anode materials in lithium ion batteries. Enormous efforts have been devoted to improving the electrical conductivity and lithium ion diffusivity in chemically synthesized TiO2 nanostructures. In this work we demonstrate that 3D Ti3+-self-doped TiO2 (TiO2-δ) nanomembranes, which are prepared by physical vapor deposition combined with strain-released rolled-up technology, have a great potential to address several of the long-standing challenges associated with TiO2 anodes. The intrinsic electrical conductivity of the TiO2 layer can be significantly improved by the in situ generated Ti3+, and the amorphous, thin TiO2 nanomembrane provides a shortened Li+ diffusion pathway. The fabricated material shows a favorable electrochemical reaction mechanism for lithium storage. Further, post-treatments are employed to adjust the Ti3+ concentration and crystallinity degree in TiO2 nanomembranes, providing an opportunity to investigate the important influences of Ti3+ self-doping and amorphous structures on the electrochemical processes. With these experiments, the pseudocapacitance contributions in TiO2 nanomembranes with different crystallinity degree are quantified and verified by an in-depth kinetics analysis. Additionally, an ultrathin metallic Ti layer can be included, which further improves the lithium storage properties of the TiO2, giving rise to the state-of-the-art capacity (200 mAh g-1 at 1 C), excellent rate capability (up to 50 C), and ultralong lifetime (for 5000 cycles at 10 C, with an extraordinary retention of 100%) of TiO2 anodes.
منابع مشابه
Hierarchical TiO2/C nanocomposite monoliths with a robust scaffolding architecture, mesopore-macropore network and TiO2-C heterostructure for high-performance lithium ion batteries.
Engineering hierarchical structures of electrode materials is a powerful strategy for optimizing the electrochemical performance of an anode material for lithium-ion batteries (LIBs). Herein, we report the fabrication of hierarchical TiO2/C nanocomposite monoliths by mediated mineralization and carbonization using bacterial cellulose (BC) as a scaffolding template as well as a carbon source. Ti...
متن کاملArray of nanosheets render ultrafast and high-capacity Na-ion storage by tunable pseudocapacitance
Sodium-ion batteries are a potentially low-cost and safe alternative to the prevailing lithium-ion battery technology. However, it is a great challenge to achieve fast charging and high power density for most sodium-ion electrodes because of the sluggish sodiation kinetics. Here we demonstrate a high-capacity and high-rate sodium-ion anode based on ultrathin layered tin(II) sulfide nanostructur...
متن کامل3D hierarchical porous graphene aerogel with tunable meso-pores on graphene nanosheets for high-performance energy storage
New and novel 3D hierarchical porous graphene aerogels (HPGA) with uniform and tunable meso-pores (e.g., 21 and 53 nm) on graphene nanosheets (GNS) were prepared by a hydrothermal self-assembly process and an in-situ carbothermal reaction. The size and distribution of the meso-pores on the individual GNS were uniform and could be tuned by controlling the sizes of the Co3O4 NPs used in the hydro...
متن کاملHigh-rate electrochemical energy storage through Li+ intercalation pseudocapacitance.
Pseudocapacitance is commonly associated with surface or near-surface reversible redox reactions, as observed with RuO2·xH2O in an acidic electrolyte. However, we recently demonstrated that a pseudocapacitive mechanism occurs when lithium ions are inserted into mesoporous and nanocrystal films of orthorhombic Nb2O5 (T-Nb2O5; refs 1,2). Here, we quantify the kinetics of charge storage in T-Nb2O5...
متن کامل3D TiO2@Ni(OH)2 Core-shell Arrays with Tunable Nanostructure for Hybrid Supercapacitor Application
Three dimensional hierarchical nanostructures have attracted great attention for electrochemical energy storage applications. In this work, self-supported TiO2@Ni(OH)2 core-shell nanowire arrays are prepared on carbon fiber paper via the combination of hydrothermal synthesis and chemical bath deposition. In this core-shell hybrid, the morphology and wall size of the interconnected nanoflake she...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- ACS nano
دوره 11 1 شماره
صفحات -
تاریخ انتشار 2017