Sequence progressive alignment, a framework for practical large-scale probabilistic consistency alignment

نویسندگان

  • Benedict Paten
  • Javier Herrero
  • Kathryn Beal
  • Ewan Birney
چکیده

MOTIVATION Multiple sequence alignment is a cornerstone of comparative genomics. Much work has been done to improve methods for this task, particularly for the alignment of small sequences, and especially for amino acid sequences. However, less work has been done in making promising methods that work on the small-scale practically for the alignment of much larger genomic sequences. RESULTS We take the method of probabilistic consistency alignment and make it practical for the alignment of large genomic sequences. In so doing we develop a set of new technical methods, combined in a framework we term 'sequence progressive alignment', because it allows us to iteratively compute an alignment by passing over the input sequences from left to right. The result is that we massively decrease the memory consumption of the program relative to a naive implementation. The general engineering of the challenges faced in scaling such a computationally intensive process offer valuable lessons for planning related large-scale sequence analysis algorithms. We also further show the strong performance of Pecan using an extended analysis of ancient repeat alignments. Pecan is now one of the default alignment programs that has and is being used by a number of whole-genome comparative genomic projects. AVAILABILITY The Pecan program is freely available at http://www.ebi.ac.uk/ approximately bjp/pecan/ Pecan whole genome alignments can be found in the Ensembl genome browser.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ProbCons: Probabilistic consistency-based multiple sequence alignment.

To study gene evolution across a wide range of organisms, biologists need accurate tools for multiple sequence alignment of protein families. Obtaining accurate alignments, however, is a difficult computational problem because of not only the high computational cost but also the lack of proper objective functions for measuring alignment quality. In this paper, we introduce probabilistic consist...

متن کامل

PROBCONS: Probabilistic Consistency-Based Multiple Alignment of Amino Acid Sequences

Obtaining an accurate multiple alignment of protein sequences is a difficult computational problem for which many heuristic techniques sacrifice optimality to achieve reasonable running times. The most commonly used heuristic is progressive alignment, which merges sequences into a multiple alignment by pairwise comparisons along the nodes of a guide tree. To improve accuracy, consistency-based ...

متن کامل

An Application of the ABS LX Algorithm to Multiple Sequence Alignment

We present an application of ABS algorithms for multiple sequence alignment (MSA). The Markov decision process (MDP) based model leads to a linear programming problem (LPP), whose solution is linked to a suggested alignment. The important features of our work include the facility of alignment of multiple sequences simultaneously and no limit for the length of the sequences. Our goal here is to ...

متن کامل

Recent developments in the MAFFT multiple sequence alignment program

The accuracy and scalability of multiple sequence alignment (MSA) of DNAs and proteins have long been and are still important issues in bioinformatics. To rapidly construct a reasonable MSA, we developed the initial version of the MAFFT program in 2002. MSA software is now facing greater challenges in both scalability and accuracy than those of 5 years ago. As increasing amounts of sequence dat...

متن کامل

QuickProbs 2: Towards rapid construction of high-quality alignments of large protein families

The ever-increasing size of sequence databases caused by the development of high throughput sequencing, poses to multiple alignment algorithms one of the greatest challenges yet. As we show, well-established techniques employed for increasing alignment quality, i.e., refinement and consistency, are ineffective when large protein families are investigated. We present QuickProbs 2, an algorithm f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Bioinformatics

دوره 25 3  شماره 

صفحات  -

تاریخ انتشار 2009