Cardioprotection by resveratrol: a novel mechanism via autophagy involving the mTORC2 pathway.
نویسندگان
چکیده
AIMS On the basis of our previous reports that cardioprotection induced by ischaemic preconditioning induces autophagy and that resveratrol, a polyphenolic antioxidant present in grapes and red wine induces preconditioning-like effects, we sought to determine if resveratrol could induce autophagy. METHODS AND RESULTS Resveratrol at lower doses (0.1 and 1 microM in H9c2 cardiac myoblast cells and 2.5 mg/kg/day in rats) induced cardiac autophagy shown by enhanced formation of autophagosomes and its component LC3-II after hypoxia-reoxygenation or ischaemia-reperfusion. The autophagy was attenuated with the higher dose of resveratrol. The induction of autophagy was correlated with enhanced cell survival and decreased apoptosis. Treatment with rapamycin (100 nM), a known inducer of autophagy, did not further increase autophagy compared with resveratrol alone. Autophagic inhibitors, wortmannin (2 microM) and 3-methyladenine (10 mM), significantly attenuated the resveratrol-induced autophagy and induced cell death. The activation of mammalian target of rapamycin (mTOR) was differentially regulated by low-dose resveratrol, i.e. the phosphorylation of mTOR at serine 2448 was inhibited, whereas the phosphorylation of mTOR at serine 2481 was increased, which was attenuated with a higher dose of resveratrol. Although resveratrol attenuated the activation of mTOR complex 1, low-dose resveratrol significantly induced the expression of Rictor, a component of mTOR complex 2, and activated its downstream survival kinase Akt (Ser 473). Resveratrol-induced Rictor was found to bind with mTOR. Furthermore, treatment with Rictor siRNA attenuated the resveratrol-induced autophagy. CONCLUSION Our results indicate that at lower dose, resveratrol-mediated cell survival is, in part, mediated through the induction of autophagy involving the mTOR-Rictor survival pathway.
منابع مشابه
Regulation of autophagy by AMP-activated protein kinase/ sirtuin 1 pathway reduces spinal cord neurons damage
Objective(s): AMP-activated protein kinase/sirtuin 1 (AMPK/SIRT1) signaling pathway has been proved to be involved in the regulation of autophagy in various models. The aim of this study was to evaluate the effect of AMPK/SIRT1 pathway on autophagy after spinal cord injury (SCI). Materials and Methods:The SCI model was established in rats in vivo and the primary spinal cord neurons were subject...
متن کاملCo-ordinated autophagy with resveratrol and γ-tocotrienol confers synergetic cardioprotection
This study compared two dietary phytochemicals, grape-derived resveratrol and palm oil-derived γ-tocotrienol, either alone or in combination, on the contribution of autophagy in cardioprotection during ischaemia and reperfusion. Sprague-Dawley rats weighing between 250 and 300 g were randomly assigned to one of the following groups: vehicle, ischaemia/reperfusion (I/R), resveratrol + I/R, γ-toc...
متن کاملEupafolin ameliorates lipopolysaccharide-induced cardiomyocyte autophagy via PI3K/AKT/mTOR signaling pathway
Objective(s): Eupafolin, a major active component of Eupatorium perfoliatum L., has anti-inflammatory and anti-oxidant properties. Lipopolysaccharide (LPS) is responsible for myocardial depression. A line of evidences revealed that LPS induces autophagy in cardiomyocytes injury. This study aims to evaluate the effects of eupafolin on LPS-induced cardiomyocyte autophagy...
متن کاملResveratrol Provides Cardioprotection after Ischemia/reperfusion Injury via Modulation of Antioxidant Enzyme Activities
In this study, we investigated the cardioprotective effects of resveratrol. Rats were intraperitoneally administered with resveratrol (25 mg/kg bw) or vehicle (ethanol 10%) for 7 days and their heart subjected to ischemia/reperfusion injury. Isolated hearts were langendorff perfused, left ventricular functions as heart rate and developed pressure, as well as, heart antioxidant status were deter...
متن کاملA non-canonical MEK/ERK signaling pathway regulates autophagy via regulating Beclin 1.
Autophagy-essential proteins are the molecular basis of protective or destructive autophagy machinery. However, little is known about the signaling mechanisms governing these proteins and the opposing consequences of autophagy in mammals. Here we report that a non-canonical MEK/ERK module, which is positioned downstream of AMP-activated protein kinase (AMPK) and upstream of tuberous sclerosis c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cardiovascular research
دوره 86 1 شماره
صفحات -
تاریخ انتشار 2010