Optimal Uncertainty Quantification

نویسندگان

  • Houman Owhadi
  • Clint Scovel
  • Timothy John Sullivan
  • Mike McKerns
  • Michael Ortiz
چکیده

We propose a rigorous framework for uncertainty quantification (UQ) in which the UQ objectives and its assumptions/information set are brought to the forefront. This framework, which we call optimal uncertainty quantification (OUQ), is based on the observation that, given a set of assumptions and information about the problem, there exist optimal bounds on uncertainties: these are obtained as values of well-defined optimization problems corresponding to extremizing probabilities of failure, or of deviations, subject to the constraints imposed by the scenarios compatible with the assumptions and information. In particular, this framework does not implicitly impose inappropriate assumptions, nor does it repudiate relevant information. Although OUQ optimization problems are extremely large, we show that under general conditions they have finite-dimensional reductions. As an application, we develop optimal concentration inequalities (OCI) of Hoeffding and McDiarmid type. Surprisingly, these results show that uncertainties in input parameters, which propagate to output uncertainties in the classical sensitivity analysis paradigm, may fail to do so if the transfer functions (or probability distributions) are imperfectly known. We show how, for hierarchical structures, this phenomenon may lead to the nonpropagation of uncertainties or information across scales. In addition, a general algorithmic framework is developed for OUQ and is tested on the Caltech surrogate model for hypervelocity impact and on the seismic safety assessment of truss structures, suggesting the feasibility of the framework for important complex systems. The introduction of this paper provides both an overview of the paper and a self-contained minitutorial on the basic concepts and issues of UQ.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Forward and Backward Uncertainty Quantification in Optimization

This contribution gathers some of the ingredients presented during the Iranian Operational Research community gathering in Babolsar in 2019.It is a collection of several previous publications on how to set up an uncertainty quantification (UQ) cascade with ingredients of growing computational complexity for both forward and reverse uncertainty propagation.

متن کامل

Uncertainty Quantification Based Multi- Objective Optimization for Crashworthiness Design

This paper presents a methodology for uncertainty quantification based multi-objective optimization of automotive body components under impact scenario. Conflicting design requirements arise as one tries, for example, to minimize structural mass while maximizing energy absorption of an automotive rail section under structural and occupant safety related performance measure constraints. Uncertai...

متن کامل

Convex Optimal Uncertainty Quantification

Optimal uncertainty quantification (OUQ) is a framework for numerical extreme-case analysis of stochastic systems with imperfect knowledge of the underlying probability distribution. This paper presents sufficient conditions under which an OUQ problem can be reformulated as a finite-dimensional convex optimization problem, for which efficient numerical solutions can be obtained. The sufficient ...

متن کامل

A Non-parametric Approach for Uncertainty Quantification in Elastodynamics

Matrix variate distributions are are used to quantify uncertainty in the mass, stiffness and damping matrices. The proposed approach is based on the so called Wishart random matrices. The probability density function of the system matrices are derived using the maximum entropy method. It is assumed that the mean of the system matrices are known. A new optimal Wishart distribution is proposed to...

متن کامل

Bayesian uncertainty quantification for epidemic spread on networks

While there exist a number of mathematical approaches to modeling the spread of disease on a network, analyzing such systems in the presence of uncertainty introduces significant complexity. In scenarios where system parameters must be inferred from limited observations, general approaches to uncertainty quantification can generate approximate distributions of the unknown parameters, but these ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM Review

دوره 55  شماره 

صفحات  -

تاریخ انتشار 2013