Video anomaly detection based on a hierarchical activity discovery within spatio-temporal contexts
نویسندگان
چکیده
In this paper, we present a novel approach for video-anomaly detection in crowded and complicated scenes. The proposed approach detects anomalies based on a hierarchical activity-pattern discovery framework, comprehensively considering both global and local spatio-temporal contexts. The discovery is a coarse-to-fine learning process with unsupervised methods for automatically constructing normal activity patterns at different levels. A unified anomaly energy function is designed based on these discovered activity patterns to identify the abnormal level of an input motion pattern. We demonstrate the effectiveness of the proposed method on the UCSD anomaly-detection datasets and compare the performance with existing work. & 2014 Elsevier B.V. All rights reserved.
منابع مشابه
Traffic Scene Analysis using Hierarchical Sparse Topical Coding
Analyzing motion patterns in traffic videos can be exploited directly to generate high-level descriptions of the video contents. Such descriptions may further be employed in different traffic applications such as traffic phase detection and abnormal event detection. One of the most recent and successful unsupervised methods for complex traffic scene analysis is based on topic models. In this pa...
متن کاملA New Wavelet Based Spatio-temporal Method for Magnification of Subtle Motions in Video
Video magnification is a computational procedure to reveal subtle variations during video frames that are invisible to the naked eye. A new spatio-temporal method which makes use of connectivity based mapping of the wavelet sub-bands is introduced here for exaggerating of small motions during video frames. In this method, firstly the wavelet transformed frames are mapped to connectivity space a...
متن کاملSpatio-temporal texture modelling for real-time crowd anomaly detection
With the rapidly increasing demands from surveillance and security industries, crowd behaviour analysis has become one of the hotly pursued video event detection frontiers within the computer vision arena in recent years. This research has investigated innovative crowd behaviour detection approaches based on statistical crowd features extracted from video footages. In this paper, a new crowd vi...
متن کاملRecognition of Visual Events using Spatio-Temporal Information of the Video Signal
Recognition of visual events as a video analysis task has become popular in machine learning community. While the traditional approaches for detection of video events have been used for a long time, the recently evolved deep learning based methods have revolutionized this area. They have enabled event recognition systems to achieve detection rates which were not reachable by traditional approac...
متن کاملCrowd Anomaly Detection for Automated Video Surveillance
Video-based crowd behaviour detection aims at tackling challenging problems such as automating and identifying changing crowd behaviours under complex real life situations. In this paper, real-time crowd anomaly detection algorithms have been investigated. Based on the spatio-temporal video volume concept, an innovative spatio-temporal texture model has been proposed in this research for its ri...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neurocomputing
دوره 143 شماره
صفحات -
تاریخ انتشار 2014