The Active Bijection between Regions and Simplices in Supersolvable Arrangements of Hyperplanes

نویسندگان

  • Emeric Gioan
  • Michel Las Vergnas
چکیده

Comparing two expressions of the Tutte polynomial of an ordered oriented matroid yields a remarkable numerical relation between the numbers of reorientations and bases with given activities. A natural activity preserving reorientation-to-basis mapping compatible with this relation is described in a series of papers by the present authors. This mapping, equivalent to a bijection between regions and no broken circuit subsets, provides a bijective version of several enumerative results due to Stanley, Winder, Zaslavsky, and Las Vergnas, expressing the number of acyclic orientations in graphs, or the number of regions in real arrangements of hyperplanes or pseudohyperplanes (i.e. oriented matroids), as evaluations of the Tutte polynomial. In the present paper, we consider in detail the supersolvable case – a notion introduced by Stanley – in the context of arrangements of hyperplanes. For linear orderings compatible with the supersolvable structure, special properties are available, yielding constructions significantly simpler than those in the general case. As an application, we completely carry out the computation of the active bijection for the Coxeter arrangements An and Bn. It turns out that in both cases the active bijection is closely related to a classical bijection between permutations and increasing trees.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Shard Intersection Order

We define a new lattice structure (W,) on the elements of a finite Coxeter group W. This lattice, called the shard intersection order, is weaker than the weak order and has the noncrossing partition lattice NC(W) as a sublattice. The new construction of NC(W) yields a new proof that NC(W) is a lattice. The shard intersection order is graded and its rank generating function is the W-Eulerian pol...

متن کامل

A simple bijection for the regions of the Shi arrangement of hyperplanes

The Shi arrangement Sn is the arrangement of affine hyperplanes in R n of the form xi−xj = 0 or 1, for 1 ≤ i < j ≤ n. It dissects R n into (n+1) regions, as was first proved by Shi. We give a simple bijective proof of this result. Our bijection generalizes easily to any subarrangement of Sn containing the hyperplanes xi − xj = 0 and to the extended Shi arrangements.

متن کامل

A Topological Representation Theorem for tropical oriented matroids

Tropical oriented matroids were defined by Ardila and Develin in 2007. They are a tropical analogue of classical oriented matroids in the sense that they encode the properties of the types of points in an arrangement of tropical hyperplanes – in much the same way as the covectors of (classical) oriented matroids describe the types in arrangements of linear hyperplanes. Not every oriented matroi...

متن کامل

Inductively Factored Signed-graphic Arrangements of Hyperplanes

In 1994, Edelman and Reiner characterized free and supersolvable hyperplane arrangements in the restricted interval [An−1, Bn]. In this paper, we give a characterization of inductively factored arrangements in this interval, and show that the same characterization also describes factored arrangements in this interval. These results use the compact notation of signed graphs introduced by Zaslavsky.

متن کامل

The active bijection in graphs, hyperplane arrangements, and oriented matroids, 1: The fully optimal basis of a bounded region

The present paper is the first in a series of four dealing with a mapping, introduced by the present authors, from orientations to spanning trees, from regions to simplices in real hyperplane arrangements, from reorientations to bases in oriented matroids (in order of increasing generality). This mapping is actually defined for oriented matroids on a linearly ordered ground set. We call it the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electr. J. Comb.

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2006