Experimental Realisation of High-sensitivity Laboratory X-ray Grating-based Phase-contrast Computed Tomography
نویسندگان
چکیده
The possibility to perform high-sensitivity X-ray phase-contrast imaging with laboratory grating-based phase-contrast computed tomography (gbPC-CT) setups is of great interest for a broad range of high-resolution biomedical applications. However, achieving high sensitivity with laboratory gbPC-CT setups still poses a challenge because several factors such as the reduced flux, the polychromaticity of the spectrum, and the limited coherence of the X-ray source reduce the performance of laboratory gbPC-CT in comparison to gbPC-CT at synchrotron facilities. In this work, we present our laboratory X-ray Talbot-Lau interferometry setup operating at 40 kVp and describe how we achieve the high sensitivity yet unrivalled by any other laboratory X-ray phase-contrast technique. We provide the angular sensitivity expressed via the minimum resolvable refraction angle both in theory and experiment, and compare our data with other differential phase-contrast setups. Furthermore, we show that the good stability of our high-sensitivity setup allows for tomographic scans, by which even the electron density can be retrieved quantitatively as has been demonstrated in several preclinical studies.
منابع مشابه
A user-friendly LabVIEW software platform for grating based X-ray phase-contrast imaging.
X-ray phase-contrast imaging can provide greatly improved contrast over conventional absorption-based imaging for weakly absorbing samples, such as biological soft tissues and fibre composites. In this study, we introduced an easy and fast way to develop a user-friendly software platform dedicated to the new grating-based X-ray phase-contrast imaging setup at the National Synchrotron Radiation ...
متن کاملImaging Liver Lesions Using Grating-Based Phase-Contrast Computed Tomography with Bi-Lateral Filter Post-Processing
X-ray phase-contrast imaging shows improved soft-tissue contrast compared to standard absorption-based X-ray imaging. Especially the grating-based method seems to be one promising candidate for clinical implementation due to its extendibility to standard laboratory X-ray sources. Therefore the purpose of our study was to evaluate the potential of grating-based phase-contrast computed tomography...
متن کاملHelical X-ray phase-contrast computed tomography without phase stepping
X-ray phase-contrast computed tomography (PCCT) using grating interferometry provides enhanced soft-tissue contrast. The possibility to use standard polychromatic laboratory sources enables an implementation into a clinical setting. Thus, PCCT has gained significant attention in recent years. However, phase-contrast CT scans still require significantly increased measurement times in comparison ...
متن کاملRegion-of-interest tomography for grating-based X-ray differential phase-contrast imaging.
We report numerical and experimental results demonstrating accurate region-of-interest computed tomography (CT) reconstruction based on differential phase-contrast projection (DPC) images. The approach removes the constraint of covering the entire sample within the field of view of the image detector. Particularly for biomedical applications, the presented DPC-CT region-of-interest approach wil...
متن کاملHigh-sensitivity phase-contrast tomography of rat brain in phosphate buffered saline
We report advances and complementary results concerning a recently developed method for high-sensitivity grating-based x-ray phase-contrast tomography. In particular we demonstrate how the soft tissue sensitivity of the technique can be used to obtain in-vitro tomographic images of rat brain specimens. Contrary to our previous experiments with fixated specimen (chemically modified or formalin f...
متن کامل