Optimized prefactored compact schemes
نویسندگان
چکیده
The numerical simulation of aeroacoustic phenomena requires high-order accurate numerical schemes with low dispersion and dissipation errors. In this paper we describe a strategy for developing high-order accurate prefactored compact schemes, requiring very small stencil support. These schemes require fewer boundary stencils and offer simpler boundary condition implementation than existing compact schemes. The prefactorization strategy splits the central implicit schemes into forward and backward biased operators. Using Fourier analysis, we show it is possible to select the coefficients of the biased operators such that their dispersion characteristics match those of the original central compact scheme and their numerical wavenumbers have equal and opposite imaginary components. This ensures that when the forward and backward stencils are added, the original central compact scheme is recovered. To extend the resolution characteristic of the schemes, an optimization strategy is employed in which formal order of accuracy is sacrificed in preference to enhanced resolution characteristics across the range of wavenumbers realizable on a given mesh. The resulting optimized schemes yield improved dispersion characteristics compared to the standard sixthand eighth-order compact schemes making them more suitable for high-resolution numerical simulations in gas dynamics and computational aeroacoustics. The efficiency, accuracy and convergence characteristics of the new optimized prefactored compact schemes are demonstrated by their application to several test problems. 2003 Elsevier Science B.V. All rights reserved.
منابع مشابه
Finite-volume Treatment of Dispersion-relation- Preserving and Optimized Prefactored Compact Schemes for Wave Propagation
In developing suitable numerical techniques for computational aero-acoustics, the DispersionRelation-Preserving (DRP) scheme by Tam and coworkers, and the optimized prefactored compact (OPC) scheme by Ashcroft and Zhang have shown desirable properties of reducing both dissipative and dispersive errors. These schemes, originally based on the finite difference, attempt to optimize the coefficient...
متن کاملHigh Order Compact Finite Difference Schemes for Solving Bratu-Type Equations
In the present study, high order compact finite difference methods is used to solve one-dimensional Bratu-type equations numerically. The convergence analysis of the methods is discussed and it is shown that the theoretical order of the method is consistent with its numerical rate of convergence. The maximum absolute errors in the solution at grid points are calculated and it is shown that the ...
متن کاملCartesian Cut-Cell Method with Local Grid Refinement for Wave Computations
Sound generation from a vibrating circular piston is a classical acoustic problem. The goal of this paper is to simulate numerically the sound radiation produced by oscillating baffled pistons, using both linear and nonlinear model, and to consider the interplay between wave propagation and geometric complexities. The linear solution, based on the linear Euler equations, will be compared to the...
متن کاملA Family of Sixth-Order Compact Finite-Difference Schemes for the Three-Dimensional Poisson Equation
We derive a family of sixth-order compact finite-difference schemes for the three-dimensional Poisson’s equation. As opposed to other research regarding higher-order compact difference schemes, our approach includes consideration of the discretization of the source function on a compact finite-difference stencil. The schemes derived approximate the solution to Poisson’s equation on a compact st...
متن کاملHighly Accurate Dispersion Relation Preserving Schemes for Incompressible Flows
The results of a 3D DNS code based on explicit optimized DRP [1] are analyzed for moderate Reynolds number (Re=4200). The aim is to show the ability of these schemes to give accurate results in a small amount of time comparing to others accurate schemes as compact schemes. To this end, we consider a wall-bounded turbulent flow. Periodic boundaries conditions are applied in the streamwise and sp...
متن کامل