Distinct Roles of HDAC3 in the Core Circadian Negative Feedback Loop Are Critical for Clock Function.
نویسندگان
چکیده
In the core mammalian circadian negative feedback loop, the BMAL1-CLOCK complex activates the transcription of the genes Period (Per) and Cryptochrome (Cry). To close the negative feedback loop, the PER-CRY complex interacts with the BMAL1-CLOCK complex to repress its activity. These two processes are separated temporally to ensure clock function. Here, we show that histone deacetylase 3 (HDAC3) is a critical component of the circadian negative feedback loop by regulating both the activation and repression processes in a deacetylase activity-independent manner. Genetic depletion of Hdac3 results in low-amplitude circadian rhythms and dampened E-box-driven transcription. In subjective morning, HDAC3 is required for the efficient transcriptional activation process by regulating BMAL1 stability. In subjective night, however, HDAC3 blocks FBXL3-mediated CRY1 degradation and strongly promotes BMAL1 and CRY1 association. Therefore, these two opposing but temporally separated roles of HDAC3 in the negative feedback loop provide a mechanism for robust circadian gene expression.
منابع مشابه
FRQ-interacting RNA helicase mediates negative and positive feedback in the Neurospora circadian clock.
The Neurospora circadian oscillator comprises FREQUENCY (FRQ) and its transcription activator, the White Collar Complex (WCC). Repression of WCC's transcriptional activity by FRQ via negative feedback is indispensable for clock function. An unbiased genetic screen that targeted mutants with defects in negative feedback regulation yielded a fully viable arrhythmic strain bearing a novel allele o...
متن کاملOverlapping and Distinct Roles of PRR7 and PRR9 in the Arabidopsis Circadian Clock
The core mechanism of the circadian oscillators described to date rely on transcriptional negative feedback loops with a delay between the negative and the positive components . In plants, the first suggested regulatory loop involves the transcription factors CIRCADIAN CLOCK-ASSOCIATED 1 (CCA1) and LATE ELONGATED HYPOCOTYL (LHY) and the pseudo-response regulator TIMING OF CAB EXPRESSION 1 (TOC1...
متن کاملIdentification of a novel cryptochrome differentiating domain required for feedback repression in circadian clock function.
Circadian clocks in mammals are based on a negative feedback loop in which transcriptional repression by the cryptochromes, CRY1 and CRY2, lies at the heart of the mechanism. Despite similarities in sequence, domain structure, and biochemical activity, they play distinct roles in clock function. However, detailed biochemical studies have not been straightforward and Cry function has not been ex...
متن کاملAltered Sleep Homeostasis in Knockout Mice
INTRODUCTION The timing and quality of sleep are controlled by the interaction of a homeostatic process, that tracks sleep need as a function of the previous sleep/wake history, and a circadian process that ensures the appropriate timing of sleep relative to the daily light-dark alternation.1,2 Although these two processes seem functionally and neurophysiologically distinct, at the molecular le...
متن کاملTranscriptional and post-transcriptional regulation of the circadian clock of cyanobacteria and Neurospora.
Circadian clocks are self-sustained oscillators modulating rhythmic transcription of large numbers of genes. Clock-controlled gene expression manifests in circadian rhythmicity of many physiological and behavioral functions. In eukaryotes, expression of core clock components is organized in a network of interconnected positive and negative feedback loops. This network is thought to constitute t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cell reports
دوره 14 4 شماره
صفحات -
تاریخ انتشار 2016