A Coupled Cfd Finite Element Analysis Methodology in a Bifurcation Pipe in a Nuclear Plant Heat Exchanger

نویسندگان

  • J. A. Dixon
  • A. Guijarro Valencia
  • P. Ireland
  • P. Ridland
چکیده

The accurate calculation of temperature distribution in key parts of a nuclear plant plays a crucial role in maximising the power output and the plant efficiency, whilst ensuring safe operation. The need for making the most profitable use of the available sources of energy requires the full exploitation of plant operational capacity. Temperature dependent material properties mean that increasing the power output in a nuclear plant may reduce the life of the welds in the pipes of the heat exchanger (boiler), operating in very demanding conditions. Rolls-Royce plc was requested to come up with a suitable solution that shielded critical pipe weld locations, reducing local temperatures, so allowing a useful increase in power output from the plant. Part of the heat shield design process was a comprehensive thermal analysis of the installation. Traditionally fluid and solid simulations are conducted separately or using conjugate analysis. Standard methods rely on the application of boundary conditions to the wall surface, which are commonly based on empirical heat transfer coefficient correlations or approximate read across of the CFD results. An alternative approach using conjugate calculations can be adopted, but the computational cost and meshing difficulties in matching the fluid and solid grids makes this unaffordable in terms of analysis time. This paper presents the application of an improved method using a communication library (SC89) between the in-house finite element (FE) code SC03, and the commercial computational fluid dynamics (CFD) code FLUENT. The method has been validated using test data from a Perspex model, where heat transfer coefficients were measured using a transient liquid crystal technique.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simulation and CFD Analysis of heat pipe heat exchanger using Fluent to increase of the thermal efficiency

In this paper, the heat pipe heat exchanger (HPHE) is considered and computational fluid dynamics (CFD) is used to analyze its evaporator’s performance and based on it, will be try to increase the thermal efficiency and to optimize the distribution of fluid flow in this type of heat exchangers. The CFD principles which are made use in this article are effective and appropriate methods that usin...

متن کامل

Experimental and Numerical Analysis of Flow and Heat Transfer in a Gas-Liquid Thermosyphon Heat Exchanger in a Pilot Plant

A numerical and experimental investigation of flow and heat transfer in a gas- liquid Thermosyphon Heat Exchanger "THE" with built in heat pipes and aluminum plate fins for moderate Reynolds numbers has been carried out. It's module is composed of 6 rows and 15 columns copper pipes with aluminum plate fins with dimensions of 130cm height, 47cm width and  20cm depth. The tubes have been fill...

متن کامل

Experimental Investigation on Hydrodynamic and Thermal Performance of a Gas-Liquid Thermosyphon Heat Exchanger in a Pilot Plant

Waste heat recovery is very important, because not only it reduces the expenditure of heat generation, but also it is of high priority in environmental consideration, such as reduction in greenhouse gases. One of the devices is used in waste heat recovery is heat pipe heat exchanger.Anexperimental research has been carried out to investigate the hydrodynamic and thermal performance of a gas...

متن کامل

Diagnosis of Heat Exchanger Scales in Cooling Water Systems

An experimental database is compiled in order to fingerprint the scales formed over the hot surfaces of heat exchangers, in cooling water systems or other systems with similar chemistry. To collect these data, a dynamic simulating pilot plant was designed with considerable application flexibility among which simultaneous flow of water with different velocity and heat fluxes to three simulat...

متن کامل

Heat transfer enhancement due to air bubble injection into a horizontal double pipe heat exchanger

If an air flow is injected into a liquid fluid, many ambulant air bubbles are formed inside the fluid. Air bubbles move inside the liquid fluid because of the buoyancy force, and the mobility of these air bubbles makes sizable commixture and turbulence inside the fluid. This mechanism was employed to enhance the heat transfer rate of a horizontal double pipe heat exchanger in this paper. Howeve...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010