Enhanced Hydrolysis of Cellulose in Ionic Liquid Using Mesoporous ZSM-5.

نویسندگان

  • Tianlu Chen
  • Chunrong Xiong
  • Yousheng Tao
چکیده

Mesoporous ZSM-5 prepared by alkaline treatment was demonstrated as an efficient catalyst for the cellulose hydrolysis in ionic liquid (IL), affording a high yield of reducing sugar. It was demonstrated that mesoporous ZSM-5 (SiO₂/Al₂O₃ = 38) had 76.2% cellulose conversion and 49.6% yield of total reducing sugar (TRS). In comparison, the conventional ZSM-5 had a mere 41.3% cellulose conversion with 33.2% yield of TRS. The results indicated that the important role of mesopores in zeolites in elevating the TRS yield may be due to the diffusional alleviation of cellulose macromolecules. The effects of reaction time, temperature, and the ratio of catalyst to cellulose were investigated for optimal reaction conditions. It was found that IL could enter the inner channel of mesoporous ZSM-5 to promote the generation of H⁺ from Brönsted acid sites, which facilitated hydrolysis. Moreover, the mesoporous ZSM-5 showed excellent reusability for catalytic cycles by means of calcination of the used one, promising for its practical applications in the hydrolysis of cellulose.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A novel and efficient procedure for the preparation of benzyl alcohol by hydrolysis of benzyl chloride catalyzed by PEG1000-DAIL[BF4]/Fe2(SO4)3 under homogeneous catalysis in aqueous media

In this work, benzyl alcohol was obtained in 96% excellent yield by hydrolysis of benzyl chloride catalyzedby the recyclable temperature-dependant phase-separation system that comprised the ionic liquid PEG1000-DAIL[BF4], toluene and ferric sulfate under homogeneous catalysis in aqueous media. This novel methodnot only enhanced the yield, but also made the operating units easy workup. The catal...

متن کامل

Hydrolysis of cellulose into glucose by magnetic solid acid.

Cellulose is the major component of plant biomass, which is readily available and does not compete with the food supply. Hydrolysis of cellulose as the entry point of biorefinery schemes is an important process for chemical and biochemical industries based on sugars, especially for fuel ethanol production. However, cellulose not only provides a renewable carbon source, but also offers challenge...

متن کامل

Vacuum residue upgrading by pyrolysis-catalysis procedure over mesoporous ZSM-5 zeolite

A systematic study of two-staged upgrading process of vacuum residue for light fuel production has been carried out in a semi-batch binary reactor apparatus over Y, ZSM-5 and alkaline treated ZSM-5 zeolites. Prepared catalyst samples were characterized with XRD and BET. Density and Viscosity physical properties parameters estimation, as well as GC/SIMDIS analyses were conducted on liquid produc...

متن کامل

Complete chemical hydrolysis of cellulose into fermentable sugars through ionic liquids and antisolvent pretreatments.

This work describes a relatively simple methodology for efficiently deconstructing cellulose into monomeric glucose, which is more easily transformed into a variety of platform molecules for the production of chemicals and fuels. The approach undertaken herein first involves the dissolution of cellulose in an ionic liquid (IL), followed by a second reconstruction step aided by an antisolvent. T...

متن کامل

Cellulose hydrolysis and binding with Trichoderma reesei Cel 5 A and 1 Cel 7 A and their core domains in ionic liquid solutions

1 Ionic liquids (ILs) dissolve lignocellulosic biomass and have a high potential as pretreatment 2 prior to total enzymatic hydrolysis. ILs are, however, known to inactivate cellulases. In this 3 article, enzymatic hydrolysis of microcrystalline cellulose (MCC) and enzyme binding onto 4 the cellulosic substrate were studied in the presence of cellulose-dissolving ionic liquids. Two 5 different ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecules

دوره 23 3  شماره 

صفحات  -

تاریخ انتشار 2018