Three Color Ramsey Numbers for Graphs with at most 4 Vertices
نویسندگان
چکیده
For given graphs H1, H2, H3, the 3-color Ramsey number R(H1, H2, H3) is the smallest integer n such that if we arbitrarily color the edges of the complete graph of order n with 3 colors, then it always contains a monochromatic copy of Hi colored with i, for some 1 6 i 6 3. We study the bounds on 3-color Ramsey numbers R(H1, H2, H3), where Hi is an isolate-free graph different from K2 with at most four vertices, establishing that R(P4, C4,K4) = 14, R(C4,K3,K4−e) = 17, R(C4,K3+e,K4−e) = 17, R(C4,K4− e,K4−e) = 19, 28 6 R(C4,K4−e,K4) 6 36, R(K3,K4−e,K4) 6 41, R(K4−e,K4− e,K4) 6 59 and R(K4−e,K4,K4) 6 113. Also, we prove that R(K3+e,K4−e,K4− e) = R(K3,K4 − e,K4 − e), R(C4,K3 + e,K4) 6 max{R(C4,K3,K4), 29} 6 32, R(K3 + e,K4− e,K4) 6 max{R(K3,K4− e,K4), 33} 6 41 and R(K3 + e,K4,K4) 6 max{R(K3,K4,K4), 2R(K3,K3,K4) + 2} 6 79. This paper is an extension of the article by Arste, Klamroth, Mengersen [Utilitas Mathematica, 1996].
منابع مشابه
Ramsey numbers for sets of small graphs
The Ramsey number r=r(G1-GZ-...-G,,,,H1-Hz-...-Hn) denotes the smallest r such that every 2-coloring of the edges of the complete graph K, contains a subgraph Gi with all edges of one color, or a subgraph Hi with all edges of a second color. These Ramsey numbers are determined for all sets of graphs with at most four vertices, and in the diagonal case (m = n, Gi = Hi) for all pairs of graphs, o...
متن کاملRamsey numbers of ordered graphs
An ordered graph G< is a graph G with vertices ordered by the linear ordering <. The ordered Ramsey number R(G<, c) is the minimum number N such that every ordered complete graph with c-colored edges and at least N vertices contains a monochromatic copy of G<. For unordered graphs it is known that Ramsey numbers of graphs with degrees bounded by a constant are linear with respect to the number ...
متن کاملRamsey numbers for bipartite graphs with small bandwidth
We estimate Ramsey numbers for bipartite graphs with small bandwidth and bounded maximum degree. In particular we determine asymptotically the two and three color Ramsey numbers for grid graphs. More generally, we determine the two color Ramsey number for bipartite graphs with small bandwidth and bounded maximum degree and the three color Ramsey number for such graphs with the additional assump...
متن کاملMulticolor Ramsey Numbers for Paths and Cycles
For given graphs G1, G2, . . . , Gk, k ≥ 2, the multicolor Ramsey number R(G1, G2, . . . , Gk) is the smallest integer n such that if we arbitrarily color the edges of the complete graph on n vertices with k colors, then it is always a monochromatic copy of some Gi, for 1 ≤ i ≤ k. We give a lower bound for k-color Ramsey number R(Cm, Cm, . . . , Cm), where m ≥ 8 is even and Cm is the cycle on m...
متن کاملBarycentric Ramsey Numbers for Small Graphs
Let G be a finite abelian group of order n. The barycentric Ramsey number BR(H, G) is the minimum positive integer r such that any coloring of the edges of the complete graph Kr by elements of G contains a subgraph H whose assigned edge color constitutes a barycentric sequence, i.e. there exists one edge whose color is the “average” of the colors of its edges. These BR(H, G) are determined for ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Electr. J. Comb.
دوره 19 شماره
صفحات -
تاریخ انتشار 2012