Detecting intrinsic slow variables in stochastic dynamical systems by anisotropic diffusion maps.
نویسندگان
چکیده
Nonlinear independent component analysis is combined with diffusion-map data analysis techniques to detect good observables in high-dimensional dynamic data. These detections are achieved by integrating local principal component analysis of simulation bursts by using eigenvectors of a Markov matrix describing anisotropic diffusion. The widely applicable procedure, a crucial step in model reduction approaches, is illustrated on stochastic chemical reaction network simulations.
منابع مشابه
ADM-CLE approach for detecting slow variables in continuous time Markov chains and dynamic data
A method for detecting intrinsic slow variables in high-dimensional stochastic chemical reaction networks is developed and analyzed. It combines anisotropic diffusion maps (ADM) with approximations based on the chemical Langevin equation (CLE). The resulting approach, called ADM-CLE, has the potential of being more efficient than the ADM method for a large class of chemical reaction systems, be...
متن کاملDetecting the slow manifold by anisotropic diffusion maps
with the small parameter 0 < τ 1 and α(u, v) and β(u, v) are O(1). For any given initial condition (u0, v0), already at t = O(τ ) the system approaches a new value (u0, v), where v satisfies the asymptotic relation β(u0, v) = 0. Although the system is fully described by two coordinates, the relation β(u, v) = 0 defines a slow one-dimensional manifold which approximates the slow dynamics for t τ...
متن کاملNon Linear Independent Component Analysis with Diffusion Maps
We introduce intrinsic, nonlinearly invariant, parameterizations of empirical data, generated by a nonlinear transformation of independent variables. This is achieved through anisotropic diffusion kernels on observable data manifolds that approximate a Laplacian on the inaccessible independent variable domain. The key idea is a symmetrized second order approximation of the unknown distances in ...
متن کاملDiffusion Maps, Spectral Clustering and Reaction Coordinates of Dynamical Systems
A central problem in data analysis is the low dimensional representation of high dimensional data and the concise description of its underlying geometry and density. In the analysis of large scale simulations of complex dynamical systems, where the notion of time evolution comes into play, important problems are the identification of slow variables and dynamically meaningful reaction coordinate...
متن کاملNonparametric forecasting of low-dimensional dynamical systems.
This paper presents a nonparametric modeling approach for forecasting stochastic dynamical systems on low-dimensional manifolds. The key idea is to represent the discrete shift maps on a smooth basis which can be obtained by the diffusion maps algorithm. In the limit of large data, this approach converges to a Galerkin projection of the semigroup solution to the underlying dynamics on a basis a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 106 38 شماره
صفحات -
تاریخ انتشار 2009