Preconditioning methods for improved convergence rates in iterative reconstructions

نویسندگان

  • Neal H. Clinthorne
  • Tin-Su Pan
  • Ping-Chun Chiao
  • W. Leslie Rogers
  • John A. Stamos
چکیده

Because of the characteristics of the tomographic inversion problem, iterative reconstruction techniques often suffer from poor convergence rates-especially at high spatial frequencies. By using preconditioning methods, the convergence properties of most iterative methods can be greatly enhanced without changing their ultimate solution. To increase reconstruction speed, spatially invariant preconditioning filters that can be designed using the tomographic system response and implemented using 2-D frequency-domain filtering techniques have been applied. In a sample application, reconstructions from noiseless, simulated projection data, were performed using preconditioned and conventional steepest-descent algorithms. The preconditioned methods demonstrated residuals that were up to a factor of 30 lower than the assisted algorithms at the same iteration. Applications of these methods to regularized reconstructions from projection data containing Poisson noise showed similar, although not as dramatic, behavior.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Richardson and Chebyshev Iterative Methods by Using G-frames

In this paper, we design some iterative schemes for solving operator equation $ Lu=f $, where $ L:Hrightarrow H $ is a bounded, invertible and self-adjoint operator on a separable Hilbert space $ H $. In this concern,  Richardson and Chebyshev iterative methods are two outstanding as well as long-standing ones. They can be implemented in different ways via different concepts.In this paper...

متن کامل

Preconditioned Generalized Minimal Residual Method for Solving Fractional Advection-Diffusion Equation

Introduction Fractional differential equations (FDEs)  have  attracted much attention and have been widely used in the fields of finance, physics, image processing, and biology, etc. It is not always possible to find an analytical solution for such equations. The approximate solution or numerical scheme  may be a good approach, particularly, the schemes in numerical linear algebra for solving ...

متن کامل

Fast Nonsymmetric Iterations and Preconditioning for Navier-Stokes Equations

Discretization and linearization of the steady-state Navier-Stokes equations gives rise to a nonsymmetric indeenite linear system of equations. In this paper, we introduce preconditioning techniques for such systems with the property that the eigenvalues of the preconditioned matrices are bounded independently of the mesh size used in the discretization. We connrm and supplement these analytic ...

متن کامل

High order quadrature based iterative method for approximating the solution of nonlinear equations

In this paper, weight function and composition technique is utilized to speeds up the convergence order and increase the efficiency of an existing quadrature based iterative method. This results in the proposition of its improved form from a two-point quadrature based method of convergence order ρ = 3 with efficiency index EI = 1:3161 to a three-point method of convergence order ρ = 8 with EI =...

متن کامل

Preconditioning Methods for Shift-Variant Image Reconstruction

Preconditioning methods can accelerate the convergence of gradient-based iterative methods for tomographic image reconstruction and image restoration. Circulant preconditioners have been used extensively for shiftinvariant problems. Diagonal preconditioners offer some improvement in convergence rate, but do not incorporate the structure of the Hessian matrices in imaging problems. For inverse p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE transactions on medical imaging

دوره 12 1  شماره 

صفحات  -

تاریخ انتشار 1993