Maximum Boundary Regularity of Bounded Hua-harmonic Functions on Tube Domains

نویسنده

  • ALINE BONAMI
چکیده

In this paper we prove that bounded Hua-harmonic functions on tube domains that satisfy some boundary regularity condition are necessarily pluriharmonic. In doing so, we show that a similar theorem is true on one-dimensional extensions of the Heisenberg group or equivalently on the Siegel upper half-plane.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Harmonic maps on domains with piecewise Lipschitz continuous metrics

For a bounded domain Ω equipped with a piecewise Lipschitz continuous Riemannian metric g, we consider harmonic map from (Ω, g) to a compact Riemannian manifold (N, h) ↪→ Rk without boundary. We generalize the notion of stationary harmonic maps and prove their partial regularity. We also discuss the global Lipschitz and piecewise C1,α-regularity of harmonic maps from (Ω, g) to manifolds that su...

متن کامل

Inverse positivity for general Robin problems on Lipschitz domains

It is proved that elliptic boundary value problems in divergence form can be written in many equivalent forms. This is used to prove regularity properties and maximum principles for problems with Robin boundary conditions with negative or indefinite boundary coefficient on Lipschitz domains by rewriting them as a problem with positive coefficient. It is also shown that such methods cannot be ap...

متن کامل

REGULARITY AND FREE BOUNDARY REGULARITY FOR THE p-LAPLACE OPERATOR IN REIFENBERG FLAT AND AHLFORS REGULAR DOMAINS

Let ω(·) = ω(·, x) denote the harmonic measure associated to the Laplace operator and defined with respect to Ω and x ∈ Ω. A classical result concerning the harmonic measure, due to Lavrentiev [22], states that if Ω ⊂ R is a chord arc domain, then ω is mutually absolutely continuous with respect to σ, i.e., dω = kdσ, where k is the associated Poisson kernel. Moreover, Lavrentiev [22] proved tha...

متن کامل

Reconstructed Potential Functions in Bounded Domain Vector Tomography

The tomographic imaging of vector elds on bounded domains is considered. Reconstruction formulas for the probe transform are rst shown to be valid on bounded domains. It is then shown that potential functions reconstructed from these formulas include a component that arises from the harmonic component of the vector eld, which is due to boundary conditions alone. Closed form expressions for the ...

متن کامل

Boundary Value Problems in Spaces of Distributions on Smooth and Polygonal Domains

We study boundary value problems of the form −∆u = f on Ω and Bu = g on the boundary ∂Ω, with either Dirichlet or Neumann boundary conditions, where Ω is a smooth bounded domain in Rn and the data f, g are distributions. This problem has to be first properly reformulated and, for practical applications, it is of crucial importance is to obtain the continuity of the solution u in terms of f and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003