A quasiseparable approach to five–diagonal CMV and companion matrices
نویسندگان
چکیده
Recent work in the characterization of structured matrices in terms of characteristic polynomials of principal submatrices is furthered in this paper. Some classical classes of matrices with quasiseparable structure include tridiagonal (related to real orthogonal polynomials) and banded matrices, unitary Hessenberg matrices (related to Szegö polynomials), and semiseparable matrices, as well as others. Hence working with the class of quasiseparable matrices provides new results which generalize and unify classical results. Previous work has focused on characterizing (H, 1)–quasiseparable matrices, matrices with order–one quasiseparable structure that are also upper Hessenberg. In this paper, the authors introduce the concept of a twist transformation, and use such transformations to explain the relationship between (H, 1)–quasiseparable matrices and the subclass of (1, 1)–quasiseparable matrices (without the upper Hessenberg restriction) which are related to the same systems of polynomials. These results generalize the discoveries of Cantero, Fiedler, Kimura, Moral and Velázquez of five–diagonal matrices related to Horner and Szegö polynomials in the context of quasiseparable matrices.
منابع مشابه
Characterizations of Quasiseparable Matrices and Their Subclasses via Recurrence Relations and Signal Flow Graphs
The three-term recurrence relations satisfied by real-orthogonal polynomials (related to irreducible tridiagonal matrices) and the twoand three-term recurrence relations satisfied by the Szegö polynomials (related to unitary Hessenberg matrices) are all well-known. In this paper we consider more general twoand three-term recurrence relations, and prove that the related classes of matrices are a...
متن کاملStability of QR-based fast system solvers for a subclass of quasiseparable rank one matrices
The development of fast algorithms to perform computations with quasiseparable matrices has received a lot of attention in the last decade. Many different algorithms have been presented by several research groups all over the world. Despite this intense activity, to the best of our knowledge, there is no rounding error analysis published for these fast algorithms. In this paper, we present erro...
متن کاملThe QR iteration method for Hermitian quasiseparable matrices of an arbitrary order
The QR iteration method for tridiagonal matrices is in the heart of one classical method to solve the general eigenvalue problem. In this paper we consider the more general class of quasiseparable matrices that includes not only tridiagonal but also companion, comrade, unitary Hessenberg and semiseparble matrices. A fast QR iteration method exploiting the Hermitian quasiseparable structure (and...
متن کاملTime and space efficient generators for quasiseparable matrices
The class of quasiseparable matrices is defined by the property that any submatrix entirely below or above the main diagonal has small rank, namely below a bound called the order of quasiseparability. These matrices arise naturally in solving PDE’s for particle interaction with the Fast Multi-pole Method (FMM), or computing generalized eigenvalues. From these application fields, structured repr...
متن کاملRow Compression and Nested Product Decomposition of a Hierarchical Representation of a Quasiseparable Matrix
This research introduces a row compression and nested product decomposition of an n × n hierarchical representation of a rank structured matrix A, which extends the compression and nested product decomposition of a quasiseparable matrix. The hierarchical parameter extraction algorithm of a quasiseparable matrix is efficient, requiring only O(nlog(n)) operations, and is proven backward stable. T...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009