Gradient-Enhanced Universal Kriging for Uncertainty Propagation
نویسندگان
چکیده
In this work, we investigate the issue of providing a statistical model for the response of a computer model-described nuclear engineering system, for use in uncertainty propagation. The motivation behind our approach is the need for providing an uncertainty assessment even in the circumstances where only a few samples are available. Building on our recent work in using a regression approach with derivative information for approximating the system response, we investigate the ability of a universal gradientenhanced Kriging model to provide a means for inexpensive uncertainty quantification. The universal Kriging model can be viewed as a hybrid of polynomial regression and Gaussian process regression. For this model, the mean behavior of the surrogate is determined by a polynomial regression, and deviations from this mean are represented as a Gaussian process. Tests with explicit functions and nuclear engineering models show that the universal gradient-enhanced Kriging model provides a more accurate surrogate model when compared to either regression or ordinary Kriging models. In addition we investigate the ability of the Kriging model to provide error predictions and bounds for regression models.
منابع مشابه
Improvements to Gradient-enhanced Kriging Using a Bayesian Interpretation
Cokriging is a flexible tool for constructing surrogate models on the outputs of computer models. It can readily incorporate gradient information, in which form it is named gradient-enhanced Kriging (GEK), and promises accurate surrogate models in >10 dimensions with a moderate number of sample locations for sufficiently smooth responses. However, GEK suffers from several problems: poor robustn...
متن کاملKriging-model-based uncertainty quantification in computational fluid dynamics
This paper proposes an efficient and accurate non-intrusive uncertainty quantification (UQ) method in computational fluid dynamics (CFD). Emphasis is placed on developing an UQ method that can accurately predict stochastic behaviors of output solution with small number of sampling simulations, and is also accurate for non-smooth output uncertainty responses. The proposed method is based on Krig...
متن کاملModeling spatial distribution of Tehran air pollutants using geostatistical methods incorporate uncertainty maps
The estimation of pollution fields, especially in densely populated areas, is an important application in the field of environmental science due to the significant effects of air pollution on public health. In this paper, we investigate the spatial distribution of three air pollutants in Tehran’s atmosphere: carbon monoxide (CO), nitrogen dioxide (NO2), and atmospheric particulate matters less ...
متن کاملModeling spatial distribution of Tehran air pollutants using geostatistical methods incorporate uncertainty maps
The estimation of pollution fields, especially in densely populated areas, is an important application in the field of environmental science due to the significant effects of air pollution on public health. In this paper, we investigate the spatial distribution of three air pollutants in Tehran’s atmosphere: carbon monoxide (CO), nitrogen dioxide (NO2), and atmospheric particulate matters less ...
متن کاملGeostatistical Modeling and Propagation of Uncertainty: Application to the Management of Agricultural Fields
1. Abstract This paper presents a geostatistical approach to model uncertainty about the spatial distribution of soil properties and to propagate it through a crop model, allowing for incorporation of uncertainty in the choice of management scenarios (no lime, single-rate liming and site-specific lime applications to acidic field soil). The methodology involved modeling the uncertainty about wh...
متن کامل