Decomposition of Polytopes and Polynomials

نویسندگان

  • Shuhong Gao
  • Alan G. B. Lauder
چکیده

Motivated by a connection with the factorization of multivariable polynomials, we study integral convex polytopes and their integral decompositions in the sense of the Minkowski sum. We first show that deciding decomposability of integral polygons is NP-complete then present a pseudo-polynomial time algorithm for decomposing polygons. For higher dimensional polytopes, we give a heuristic algorithm which is based upon projections and uses randomization. Applications of our algorithms include absolute irreducibility testing and factorization of polynomials via their Newton polytopes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bounds on the coefficients of tension and flow polynomials

The goal of this article is to obtain bounds on the coefficients of modular and integral flow and tension polynomials of graphs. To this end we use the fact that these polynomials can be realized as Ehrhart polynomials of inside-out polytopes. Inside-out polytopes come with an associated relative polytopal complex and, for a wide class of inside-out polytopes, we show that this complex has a co...

متن کامل

Solving Differential Equations by Using a Combination of the First Kind Chebyshev Polynomials and Adomian Decomposition Method

In this paper, we are going to solve a class of ordinary differential equations that its source term are rational functions. We obtain the best approximation of source term by Chebyshev polynomials of the first kind, then we solve the ordinary differential equations by using the Adomian decomposition method

متن کامل

Ehrhart Polynomials of Lattice-face Polytopes

There is a simple formula for the Ehrhart polynomial of a cyclic polytope. The purpose of this paper is to show that the same formula holds for a more general class of polytopes, lattice-face polytopes. We develop a way of decomposing any d-dimensional simplex in general position into d! signed sets, each of which corresponds to a permutation in the symmetric group Sd, and reduce the problem of...

متن کامل

CAYLEY DECOMPOSITIONS OF LATTICE POLYTOPES AND UPPER BOUNDS FOR h-POLYNOMIALS

We give an effective upper bound on the h-polynomial of a lattice polytope in terms of its degree and leading coefficient, confirming a conjecture of Batyrev. We deduce this bound as a consequence of a strong Cayley decomposition theorem which says, roughly speaking, that any lattice polytope with a large multiple that has no interior lattice points has a nontrivial decomposition as a Cayley su...

متن کامل

Ehrhart Polynomials of Matroid Polytopes and Polymatroids

We investigate properties of Ehrhart polynomials for matroid polytopes, independence matroid polytopes, and polymatroids. In the first half of the paper we prove that for fixed rank their Ehrhart polynomials are computable in polynomial time. The proof relies on the geometry of these polytopes as well as a new refined analysis of the evaluation of Todd polynomials. In the second half we discuss...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete & Computational Geometry

دوره 26  شماره 

صفحات  -

تاریخ انتشار 2001