Privacy Preserving Centralized Counting of Moving Objects

نویسنده

  • Thomas Liebig
چکیده

Proliferation of pervasive devices capturing sensible data streams, e.g. mobility records, raise concerns on individual privacy. Even if the data is aggregated at a central server, location data may identify a particular person. Thus, the transmitted data must be guarded against re-identification and an un-trusted server. This paper overcomes limitations of previous works and provides a privacy preserving aggregation framework for distributed data streams. Individual location data is obfuscated to the server and just aggregates of k persons can be processed. This is ensured by use of Pailler’s homomorphic encryption framework and Shamir’s secret sharing procedure. In result we obtain anonymous unification of the data streams in an un-trusted environment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A centralized privacy-preserving framework for online social networks

There are some critical privacy concerns in the current online social networks (OSNs). Users' information is disclosed to different entities that they were not supposed to access. Furthermore, the notion of friendship is inadequate in OSNs since the degree of social relationships between users dynamically changes over the time. Additionally, users may define similar privacy settings for their f...

متن کامل

TrPLS: Preserving Privacy in Trajectory Data Publishing by Personalized Local Suppression

Trajectory data are becoming more popular due to the rapid development of mobile devices and the widespread use of location-based services. They often provide useful information that can be used for data mining tasks. However, a trajectory database may contain sensitive attributes, such as disease, job, and salary, which are associated with trajectory data. Hence, improper publishing of the tra...

متن کامل

Building predictors from vertically distributed data

Due in part to the large volume of data available today, but more importantly to privacy concerns, data are often distributed across institutional, geographical and organizational boundaries rather than being stored in a centralized location. Data can be distributed by separating objects or attributes: in the homogeneous case, sites contain subsets of objects with all attributes, while in the h...

متن کامل

Privacy Preserving Publication of Moving Object Data

The increasing availability of space-time trajectories left by location-aware devices is expected to enable novel classes of applications where the discovery of consumable, concise, and actionable knowledge is the key step. However, the analysis of mobility data is a critic task by the privacy point of view: in fact, the peculiar nature of location data might enable intrusive inferences in the ...

متن کامل

Longitude: Centralized Privacy-Preserving Computation of Users' Proximity

A “friend finder” is a Location Based Service (LBS) that informs users about the presence of participants in a geographical area. In particular, one of the functionalities of this kind of application, reveals the users that are in proximity. Several implementations of the friend finder service already exist but, to the best of our knowledge, none of them provides a satisfactory technique to pro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015