Wafer-scale metasurface for total power absorption, local field enhancement and single molecule Raman spectroscopy
نویسندگان
چکیده
The ability to detect molecules at low concentrations is highly desired for applications that range from basic science to healthcare. Considerable interest also exists for ultrathin materials with high optical absorption, e.g. for microbolometers and thermal emitters. Metal nanostructures present opportunities to achieve both purposes. Metal nanoparticles can generate gigantic field enhancements, sufficient for the Raman spectroscopy of single molecules. Thin layers containing metal nanostructures ("metasurfaces") can achieve near-total power absorption at visible and near-infrared wavelengths. Thus far, however, both aims (i.e. single molecule Raman and total power absorption) have only been achieved using metal nanostructures produced by techniques (high resolution lithography or colloidal synthesis) that are complex and/or difficult to implement over large areas. Here, we demonstrate a metasurface that achieves the near-perfect absorption of visible-wavelength light and enables the Raman spectroscopy of single molecules. Our metasurface is fabricated using thin film depositions, and is of unprecedented (wafer-scale) extent.
منابع مشابه
Surface Enhanced Raman Scattering of Crystal Violet with Low Concentrations Using Self-Assembled Silver and Gold-Silver Core-Shell Nanoparticles
The active substrates in surface enhanced Raman scattering (SERS) spectroscopy were prepared through self-assembly of nanoparticles on functionalized glasses. Colloidal silver nanoparticles (Ag NPs) were prepared chemically in two different sizes by reduction of AgNO3 using trisodium citrate and sodium borohydride. Gold–silver core–shell nanoparticles were also prepared to compare between the o...
متن کاملLocal-field enhancement in an optical force metallic nanotrap: application to single-molecule spectroscopy.
We study the local-field enhancement in a nanocavity created by optical nanomanipulation. Recently we showed that a metallic probe can modify the optical force experienced by a metallic particle and generate a material selective trapping potential. We show that the same configuration used for optical forces can be used to control both in magnitude and tune the local-field enhancement around the...
متن کاملRadiative Engineering of NanoAntenna Arrays for Ultra-Sensitive Vibrational Spectroscopy of Proteins
Infrared absorption spectroscopy offers direct access to the vibrational signatures of molecular structure. Although absorption cross sections are nearly 10 orders of magnitude larger than the Raman cross sections, they are small in comparison with those of fluorescent labels. Sensitivity improvements are therefore required in order for the method to be applicable to single molecule/monolayer s...
متن کاملHighly reproducible near-field optical imaging with sub-20-nm resolution based on template-stripped gold pyramids.
With a template-stripping fabrication technique, we demonstrate the mass fabrication of high-quality, uniform, ultrasharp (10 nm) metallic probes suitable for single-molecule fluorescence imaging, tip-enhanced Raman spectroscopy (TERS), and other near-field imaging techniques. We achieve reproducible single-molecule imaging with sub-20-nm spatial resolution and an enhancement in the detected fl...
متن کاملSERS: Materials, applications, and the future
The first observations of the Raman spectra of pyridine on roughened silver were made in 19741; however, at this time the authors did not recognize that these spectra were due to any unusual, enhanced, or new phenomena. Since its discovery in 19772, interest in and the use of surface enhanced Raman spectroscopy (SERS) has grown exponentially (Fig. 1). The SERS field has dramatically progressed ...
متن کامل