An Algorithm for Detecting Communities in Folksonomy Hypergraphs
نویسندگان
چکیده
In this article, we are interested in social resource sharing systems such as Flickr, which use a lightweight knowledge representation called folksonomy. One of the fundamental questions asked by sociologists and actors involved in these online communities is to know whether a coherent tags categorization scheme emerges at global scale from folksonomy, though the users don’t share the same vocabulary. In order to satisfy their needs, we propose an algorithm to detect clusters in folksonomies hypergraphs by generalizing the Girvan and Newman’s clustering algorithm. We test our algorithm on a sample of an hypergragh of tag co-occurrence extracted from Flickr in September 2006, which gives promising results.
منابع مشابه
Learning Mixed Membership Community Models in Social Tagging Networks through Tensor Methods
Community detection in graphs has been extensively studied both in theory and in applications. However, detecting communities in hypergraphs is more challenging. In this paper, we propose a tensor decomposition approach for guaranteed learning of communities in a special class of hypergraphs modeling social tagging systems or folksonomies. A folksonomy is a tripartite 3-uniform hypergraph consi...
متن کاملDetection of Overlapping Communities in Social Tagging Systems
Some of the most popular sites in the Web today are social tagging systems or folksonomies (e.g. Delicious, Flickr, LastFm etc.) where users share resources and collaboratively annotate resources with tags which help in the search, personalized recommendation and organization of the resources. Folksonomies are modelled as tripartite (user-resource-tag) hypergraphs in order to study their networ...
متن کاملIdentifying Overlying Group of People through Clustering
Folksonomies like Delicious and LastFm are modeled as multilateral (user-resource-tag) hypergraphs for studying their network properties. Detecting communities of similar nodes from such networks is a challenging problem. Most existing algorithms for community detection in folksonomies assign unique communities to nodes, whereas in reality, users have multiple relevant interests and same resour...
متن کاملDetecting communities of workforces for the multi-skill resource-constrained project scheduling problem: A dandelion solution approach
This paper proposes a new mixed-integer model for the multi-skill resource-constrained project scheduling problem (MSRCPSP). The interactions between workers are represented as undirected networks. Therefore, for each required skill, an undirected network is formed which shows the relations of human resources. In this paper, community detection in networks is used to find the most compatible wo...
متن کاملDetecting Overlapping Communities in Social Networks using Deep Learning
In network analysis, a community is typically considered of as a group of nodes with a great density of edges among themselves and a low density of edges relative to other network parts. Detecting a community structure is important in any network analysis task, especially for revealing patterns between specified nodes. There is a variety of approaches presented in the literature for overlapping...
متن کامل