The partitioned R - matrix

نویسنده

  • Jonathan Tennyson
چکیده

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ON THE STABILITY AND THRESHOLD ANALYSIS OF AN EPIDEMIC MODEL

We consider a mathematical model of epidemic spread  in which the  population  is partitioned  into five compartments of susceptible S(t), Infected I(t), Removed R(t), Prevented U(t) and the Controlled W(t). We assume each of the compartments comprises of cohorts of individuals which are  identical with respect to the disease status. We derive five systems of equations to represent each of the ...

متن کامل

The (R,S)-symmetric and (R,S)-skew symmetric solutions of the pair of matrix equations A1XB1 = C1 and A2XB2 = C2

Let $Rin textbf{C}^{mtimes m}$ and $Sin textbf{C}^{ntimes n}$ be nontrivial involution matrices; i.e., $R=R^{-1}neq pm~I$ and $S=S^{-1}neq pm~I$. An $mtimes n$ complex matrix $A$ is said to be an $(R, S)$-symmetric ($(R, S)$-skew symmetric) matrix if $RAS =A$ ($ RAS =-A$). The $(R, S)$-symmetric and $(R, S)$-skew symmetric matrices have a number of special properties and widely used in eng...

متن کامل

MATRIX VALUATION PSEUDO RING (MVPR) AND AN EXTENSION THEOREM OF MATRIX VALUATION

Let R be a ring and V be a matrix valuation on R. It is shown that, there exists a correspondence between matrix valuations on R and some special subsets ?(MVPR) of the set of all square matrices over R, analogous to the correspondence between invariant valuation rings and abelian valuation functions on a division ring. Furthermore, based on Malcolmson’s localization, an alternative proof for t...

متن کامل

Column-Partitioned Matrices Over Rings Without Invertible Transversal Submatrices

Let the columns of a p× q matrix M over any ring be partitioned into n blocks, M = [M1, . . . , Mn]. If no p × p submatrix of M with columns from distinct blocks Mi is invertible, then there is an invertible p×p matrix Q and a positive integer m ≤ p such that QM = [QM1, . . . , QMn] is in reduced echelon form and in all but at most m − 1 blocks QMi the last m entries of each column are either a...

متن کامل

Decompositions of a Higher-Order Tensor in Block Terms - Part I: Lemmas for Partitioned Matrices

In this paper we study a generalization of Kruskal’s permutation lemma to partitioned matrices. We define the k’-rank of partitioned matrices as a generalization of the k-rank of matrices. We derive a lower-bound on the k’-rank of Khatri–Rao products of partitioned matrices. We prove that Khatri–Rao products of partitioned matrices are generically full column rank.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007