Common Hyperplane Medians for Random Vectors

نویسنده

  • THEODORE P. HILL
چکیده

xpm -x and necessarily splits in K[X] into distinct first degree factors so that Da is diagonalizable. Applying this to Dg, for Ek = {x: [g, x] = kx}, we have Eo K and D = YEk, where the sum is direct and taken over all k E K with Ek # 0. Now, if x E D *, gx xg kx for some k E K is equivalent to requiring that x belong to N *. Moreover, y E Ek is equivalent to y E Kx. Then each Ek is a K-subspace of dimension 1 and Ek* ig the coset K *x in N *. Hence, dimKD = q. From the structure of finite fields it follows readily that K is a Galois extension of Z. We can identify N *7K * with a subgroup of G(K/Z) and, if J is the fixed field for N */K *, a E J implies xax-1 = a for all x E N*. Then Da is zero on each Ek so that Da = 0 and a E Z. Hence N *7K * G(K/Z), implying dimzK IN*/K*l = q. Combining the results above leads to dimzD= (dimKD)(dimzK) = q2 and dimZC(b) = q for all b E D, b 5 Z. If r = jZj then

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Generalized “ham Sandwich” Theorems

In this short note we utilize the Borsuk-Ulam Anitpodal Theorem to present a simple proof of the following generalization of the “Ham Sandwich Theorem”: Let A1, . . . , Am ⊆ R be subsets with finite Lebesgue measure. Then, for any sequence f0, . . . , fm of R-linearly independent polynomials in the polynomial ring R[X1, . . . , Xn] there are real numbers λ0, . . . , λm, not all zero, such that ...

متن کامل

THE VARIANCE CONJECTURE ON HYPERPLANE PROJECTIONS OF THE `p BALLS

We show that for any 1 ≤ p ≤ ∞, the family of random vectors uniformly distributed on hyperplane projections of the unit ball of `p verify the variance conjecture Var |X| ≤ C max ξ∈Sn−1 E〈X, ξ〉E|X|, where C depends on p but not on the dimension n or the hyperplane. We will also show a general result relating the variance conjecture for a random vector uniformly distributed on an isotropic conve...

متن کامل

Normal Vector of a Random Hyperplane

Let v1, . . . ,vn−1 be n − 1 independent vectors in R (or C). We study x, the unit normal vector of the hyperplane spanned by the vi. Our main finding is that x resembles a random vector chosen uniformly from the unit sphere, under some randomness assumption on the vi. Our result has applications in random matrix theory. Consider an n×n random matrix with iid entries. We first prove an exponent...

متن کامل

Neural Network Support Vector Detection via a Soft-Label, Hybrid K-Means Classifier

We use random geometric graphs to describe clusters of higher dimensional data points which are bijectively mapped to a (possibly) lower dimensional space where an equivalent random cluster model is used to calculate the expected number of modes to be found when separating the data of a multimodal data set into distinct clusters. Furthermore, as a function of the expected number of modes and th...

متن کامل

ec 2 00 8 Singular 0 / 1 - matrices , and the hyperplanes spanned by random 0 / 1 - vectors

Let Ps(d) be the probability that a random 0/1-matrix of size d× d is singular, and let E(d) be the expected number of 0/1-vectors in the linear subspace spanned by d − 1 random independent 0/1-vectors. (So E(d) is the expected number of cube vertices on a random affine hyperplane spanned by vertices of the cube.) We prove that bounds on Ps(d) are equivalent to bounds on E(d): Ps(d) =

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010