Production of haloperidol-loaded PLGA nanoparticles for extended controlled drug release of haloperidol.

نویسندگان

  • Avinash Budhian
  • Steven J Siegel
  • Karen I Winey
چکیده

This study developed an emulsion-solvent evaporation method for producing haloperidol-loaded PLGA nanoparticles with up to 2% (wt/wt. of polymer) drug content, in vitro release duration of over 13 days and less than 20% burst release. The free haloperidol is removed from the nanoparticle suspension using a novel solid phase extraction technique. This leads to a more accurate determination of drug incorporation efficiency than the typical washing methods. It was discovered that PLGA end groups have a strong influence on haloperidol incorporation efficiency and its release from PLGA nanoparticles. The hydroxyl-terminated PLGA (uncapped) nanoparticles have a drug incorporation efficiency of more than 30% as compared to only 10% with methyl-terminated PLGA (capped) nanoparticles. The in vitro release profile of nanoparticles with uncapped PLGA has a longer release period and a lower initial burst as compared to capped PLGA. By varying other processing and materials parameters, the size, haloperidol incorporation and haloperidol release of the haloperidol-loaded PLGA nanoparticles were controlled.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Controlling the in vitro release profiles for a system of haloperidol-loaded PLGA nanoparticles.

We have used a systematic methodology to tailor the in vitro drug release profiles for a system of PLGA/PLA nanoparticles encapsulating a hydrophobic drug, haloperidol. We applied our previously developed sonication and homogenization methods to produce haloperidol-loaded PLGA/PLA nanoparticles with 200-1000 nm diameters and 0.2-2.5% drug content. The three important properties affecting releas...

متن کامل

Controlling the In Vitro Release Profiles for a System of Haloperidol-Loaded PLGA

We have used a systematic methodology to tailor the in vitro drug release profiles for a system of PLGA/PLA nanoparticles encapsulating a hydrophobic drug, haloperidol. We applied our previously developed sonication and homogenization methods to produce haloperidol-loaded PLGA/PLA nanoparticles with 200–1000 nm diameters and 0.2–2.5% drug content. The three important properties affecting releas...

متن کامل

Preparation of protein-loaded PLGA-PVP blend nanoparticles by nanoprecipitation method: entrapment, Initial burst and drug release kinetic studies

Objective(s):Despite of wide range applications of polymeric nanoparticles in protein delivery, there are some problems for the field of protein entrapment, initial burst and controlled release profile.   Materials and Methods: In this study, we investigated the influence of some changes in PLGA nanoparticles formulation to improve the initial and controlled release profile. Selected parameters ...

متن کامل

Effects of Ultrasound Irradiation on the Release Profile of 5-fluorouracil from Magnetic Polylactic co-glycolic Acid Nanocapsules

Background: Drug nano-carriers are one of the most important tools for targeted cancer therapy so that undesired side effects of chemotherapy drugs are minimized. In this area, the use of ultrasound can be helpful in controlling drug release from nanoparticles to achieve higher treatment efficiency.Objective: Here, we studies the effects of ultrasound irradiation on the release profile of 5-flu...

متن کامل

Preparation of Methotrexate loaded PLGA nanoparticles coated with PVA and Poloxamer188

Objective(s): Nanoparticles offer an attractive platform for drug delivery through a wide variety of the body's physiological barriers. Furthermore, modification of nanoparticle surface with moeites such as Poloxamer188 can enhance their accumulation and localization at disease site. In this work, we investigated the physiochemical effect of a scavenger receptor (SR-BI) interac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of microencapsulation

دوره 22 7  شماره 

صفحات  -

تاریخ انتشار 2005