Increased sensitivity to salt stress in an ascorbate-deficient Arabidopsis mutant.
نویسندگان
چکیده
The Arabidopsis thaliana ascorbate-deficient vtc-1 mutant has only 30% ascorbate contents of the wild type (WT). This ascorbate-deficient mutant was used here to study the physiological roles of ascorbate under salt stress in vivo. Salt stress resulted in a more significant decrease in CO2 assimilatory capacity in the vtc-1 mutant than in the WT. Photosystem II function in the Arabidopsis vtc-1 mutant also showed an increased sensitivity to salt stress. Oxidative stress, indicated by the hydrogen peroxide content, increased more dramatically in the vtc-1 mutant than in the WT under salt stress. To clarify the reason for the increased oxidative stress in the vtc-1 mutant, the contents of small antioxidant compounds and the activities of several antioxidant enzymes in the ascorbate-glutathione cycle were measured. Despite an elevated glutathione pool in the vtc-1 mutant, the ascorbate contents and the reduced form of ascorbate decreased very rapidly under salt stress. These results showed that the activities of MDAR and DHAR were lower in the vtc-1 mutant than in the WT under salt stress. Thus, low intrinsic ascorbate and an impaired ascorbate-glutathione cycle in the vtc-1 mutant under salt stress probably induced a dramatic decrease in the reduced form of ascorbate, which resulted in both enhanced ROS contents and decreased NPQ in the vtc-1 mutant.
منابع مشابه
Negative control of Strictisidine synthase like-7 gene on salt stress resistance in Arabidopsis thaliana
Strictosidine synthase-like (SSL) is a group of gene families in the Arabidopsis genome, which whose orthologues in other plants are key enzymes in mono-terpenoid indole-alkaloid biosynthesis pathway. The SSL7 is upregulated upon treatments of Arabidopsis plants with signaling molecules such as SA, methyl jasmonate and ethylene. To find the functional role of the gene, a T-DNA-mediated knockout...
متن کاملIncreased sensitivity to salt stress in tocopherol-deficient Arabidopsis mutants growing in a hydroponic system
Recent studies suggest that tocopherols could play physiological roles in salt tolerance but the mechanisms are still unknown. In this study, we analyzed changes in growth, mineral and oxidative status in vte1 and vte4 Arabidopsis thaliana mutants exposed to salt stress. vte1 and vte4 mutants lack α-tocopherol, but only the vte1 mutant is additionally deficient in γ-tocopherol. Results showed t...
متن کاملA recessive Arabidopsis mutant that grows photoautotrophically under salt stress shows enhanced active oxygen detoxification.
Mutagenized Arabidopsis seedlings (ecotype Columbia) were screened for the ability to grow photoautotrophically on solid medium containing 200 mM NaCl. A novel mutant line, designated pst1 (for photoautotrophic salt tolerance1), was obtained. There were no significant differences between pst1 and wild-type plants with regard to their ability to induce proline as an osmoregulatory solute. In add...
متن کاملZeaxanthin deficiency enhances the high light sensitivity of an ascorbate-deficient mutant of Arabidopsis.
The ascorbate content of plants is usually increased in high light (HL), implying a function for ascorbate in the acclimation of plants to HL. Nevertheless, the importance of ascorbate in HL acclimation has not yet been tested directly. Here, we report on the acclimation process of an ascorbate-deficient Arabidopsis mutant to HL. The mutant vtc2 has only 10% to 30% of wild-type levels of ascorb...
متن کاملSuppressed expression of the apoplastic ascorbate oxidase gene increases salt tolerance in tobacco and Arabidopsis plants.
Transgenic tobacco plants expressing the ascorbate oxidase (AAO) gene in sense and antisense orientations, and an Arabidopsis mutant in which the T-DNA was inserted into a putative AAO gene, were used to examine the potential roles of AAO for salt-stress tolerance in plants. AAO activities in the transgenic tobacco plants expressing the gene in sense and antisense orientations were, respectivel...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of experimental botany
دوره 56 422 شماره
صفحات -
تاریخ انتشار 2005