The Ku complex in silencing the cryptic mating-type loci of Saccharomyces cerevisiae.

نویسندگان

  • Erin E Patterson
  • Catherine A Fox
چکیده

Sir1 establishes transcriptional silencing at the cryptic mating-type loci HMR and HML (HM loci) by recruiting the three other Sir proteins, Sir2, -3, and -4, that function directly in silenced chromatin. However, SIR1-independent mechanisms also contribute to recruiting the Sir2-4 proteins to the HM loci. A screen to elucidate SIR1-independent mechanisms that establish HMR silencing identified a mutation in YKU80. The role for Ku in silencing both HMR and HML was masked by SIR1. Ku's role in silencing the HM loci was distinct from its shared role with the nuclear architecture protein Esc1 in tethering the HM loci and telomeres to the nuclear periphery. The ability of high-copy SIR4 to rescue HMR silencing defects in sir1Delta cells required Ku, and chromatin immunoprecipitation (ChIP) experiments provided evidence that Ku contributed to Sir4's physical association with the HM loci in vivo. Additional ChIP experiments provided evidence that Ku functioned directly at the HM loci. Thus Ku and Sir1 had overlapping roles in silencing the HM loci.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The DNA end-binding protein Ku regulates silencing at the internal HML and HMR loci in Saccharomyces cerevisiae.

Heterochromatin resides near yeast telomeres and at the cryptic mating-type loci, HML and HMR, where it silences transcription of the alpha- and a-mating-type genes, respectively. Ku is a conserved DNA end-binding protein that binds telomeres and regulates silencing in yeast. The role of Ku in silencing is thought to be limited to telomeric silencing. Here, we tested whether Ku contributes to s...

متن کامل

Theme and variation among silencing proteins in Saccharomyces cerevisiae and Kluyveromyces lactis.

The cryptic mating type loci in Saccharomyces cerevisiae act as reservoirs of mating type information used in mating type switching in homothallic yeast strains. The transcriptional silencing of these loci depends on the formation of a repressive chromatin structure that is reminiscent of heterochromatin. Silent information regulator (Sir) proteins 2-4 are absolutely required for silencing. To ...

متن کامل

Promoter strength influences the S phase requirement for establishment of silencing at the Saccharomyces cerevisiae silent mating type Loci.

In Saccharomyces cerevisiae, the two cryptic mating type loci, HML and HMR, are transcriptionally silent. Previous studies on the establishment of silencing at HMR identified a requirement for passage through S phase. However, the underlying mechanism for this requirement is still unknown. In contrast to HMR, we found that substantial silencing of HML could be established without passage throug...

متن کامل

A region of the Sir1 protein dedicated to recognition of a silencer and required for interaction with the Orc1 protein in saccharomyces cerevisiae.

Silencing of the cryptic mating-type loci HMR and HML requires the recognition of DNA sequence elements called silencers by the Sir1p, one of four proteins dedicated to the assembly of silenced chromatin in Saccharomyces cerevisiae. The Sir1p is thought to recognize silencers indirectly through interactions with proteins that bind the silencer DNA directly, such as the origin recognition comple...

متن کامل

SAS4 and SAS5 are locus-specific regulators of silencing in Saccharomyces cerevisiae.

Sir2p, Sir3p, Sir4p, and the core histones form a repressive chromatin structure that silences transcription in the regions near telomeres and at the HML and HMR cryptic mating-type loci in Saccharomyces cerevisiae. Null alleles of SAS4 and SAS5 suppress silencing defects at HMR; therefore, SAS4 and SAS5 are negative regulators of silencing at HMR. This study revealed that SAS4 and SAS5 contrib...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genetics

دوره 180 2  شماره 

صفحات  -

تاریخ انتشار 2008