Experimental and trajectory study on the reaction of protonated methionine with electronically excited singlet molecular oxygen (a1Δg): reaction dynamics and collision energy effects.
نویسندگان
چکیده
The reaction of protonated methionine with the lowest electronically excited state of molecular oxygen O(2)(a(1)Δ(g)) was studied in a guided ion beam apparatus, including the measurement of reaction cross sections over a center-of-mass collision energy (E(col)) range of 0.1-2.0 eV. A series of electronic structure and RRKM calculations were used to examine the properties of various complexes and transition states that might be important along the reaction coordinate. Only one product channel is observed, corresponding to generation of hydrogen peroxide via transfer of two hydrogen atoms (H2T) from protonated methionine to singlet oxygen. At low collision energies, the reaction approaches the collision limit and may be mediated by intermediate complexes. The reaction shows strong inhibition by collision energy, and becomes negligible at E(col) > 1.25 eV. A large set of quasi-classical direct dynamics trajectory simulations were calculated at the B3LYP/6-21G level of theory. Trajectories reproduced experimental results and provided insight into the mechanistic origin of the H2T reaction, how the reaction probability varies with impact parameter, and the suppressing effect of collision energy. Analysis of the trajectories shows that at E(col) = 1.0 eV the reaction is mediated by a precursor and/or hydroperoxide complex, and is sharply orientation-dependent. Only 20% of collisions have favorable reactant orientations at the collision point, and of those, less than half form precursor and hydroperoxide complexes which eventually lead to reaction. The narrow range of reactive collision orientations, together with physical quenching of (1)O(2) via intersystem crossing between singlet and triplet electronic states, may account for the low reaction efficiency observed at high E(col).
منابع مشابه
Oxidation Dynamics of Methionine with Singlet Oxygen: Effects of Methionine Ionization and Microsolvation.
We report an in-depth study on the gas-phase reactions of singlet O2[a(1)Δg] with methionine (Met) at different ionization and hydration states (including deprotonated [Met - H](-), hydrated deprotonated [Met - H](-)(H2O)1,2, and hydrated protonated MetH(+)(H2O)1,2), using guided-ion-beam scattering mass spectrometry. The measurements include the effects of collision energy (Ecol) on reaction c...
متن کاملPredictive Theoretical Kinetics of the Pressure - Dependent Spin - Forbidden Reaction O + CO → CO 2
The kinetics of the spin-forbidden reaction CO + O → CO2 is fully characterized theoretically. Global analytic representations of the lowest-energy singlet surface, the two lowest-energy triplet surfaces, and their spin–orbit coupling surfaces are obtained via dynamic weighted multireference electronic structure theory calculations and the interpolated moving least squares (IMLS) semiautomated ...
متن کاملComputational Study of the Mechanism, Reaction Rate and Thermochemistry of Atmospheric Oxidation of Methylamine with Singlet Oxygen
The reaction of CH₃NH₂ with O₂ on the singlet potential energy surfaces (PES) was carried out using the B3LYP, CCSD(T) and G3B3 theoretical approaches along with 6-311++G(3df,3pd) basis set. The suggested mechanism for the title reaction consists of one pre-reactive complex. From the pre-reactive complex, nine types of products, CH2NH+H2O2, CH3NH+OOH,...
متن کاملMolecular Dynamics Simulation of Al/NiO Thermite Reaction Using Reactive Force Field (ReaxFF)
In this work, the thermal reaction of aluminum (Al) and nickel oxide (NiO) was investigated by molecular dynamics simulations. Some effective features of reaction such as reaction temperature, the reaction mechanism, and diffusion rate of oxygen into aluminum structure were studied. ReaxFF force field was performed to study the Al/NiO thermite reaction behavior at five different temperatures (5...
متن کاملReaction Dynamics of NH2+OH on an Interpolated Potential Energy Surface
QCT calculations were performed to study the behavior of energized NH2OH formed by association collision of NH2 radical with OH radical. A potential energy surface that describes the behavior of the title reaction has been constructed by interpolation of ab initio data. H2O, HON, HNO, NH3, O, H2NO, cis or trans-HONH, and H products and two vibrationally energized NH2OH and NH3O adducts were obs...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The journal of physical chemistry. B
دوره 115 11 شماره
صفحات -
تاریخ انتشار 2011