Protective Effects of Berberine on Oxygen-Glucose Deprivation/Reperfusion on Oligodendrocyte Cell Line (OLN-93)
نویسندگان
چکیده
BACKGROUND Oligodendrocytes, the myelinating glial cells of central nervous system, are highly vulnerable to ischemic-induced excitotoxic insult, a phenomenon in which calcium overload triggers cell death. Berberine is an alkaloid extracted from medicinal herbs as Coptidis Rhizoma with several pharmacological effects like inhibition of neuronal apoptosis in cerebral ischemia. METHODS We examined the effects of berberine (0.5-4 μM) and glutamate receptors antagonists (MK-801 [10 μM] and NBQX [30 μM]) on OLN-93 cell line (a permanent immature rat oligodendrocyte) during (30, 60, 240 min) oxygen-glucose deprivation (OGD)/24 h reperfusion. The cells were cultured in 12-well plates. The cells were exposed to glucose-free medium and hypoxia in a small anaerobic chamber. Cell viability was evaluated by MTT (3-[4,5-Dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide) assay. The intracellular calcium levels also were evaluated by Ca(2+)-sensitive indicator Fura-2/AM in presence or absence of berberine (2 μM) during 30 min chemical OGD by NaN3 (20 mM). Student's t-test and ANOVA were used for statistical analysis. RESULTS Berberine, MK-801and NBQX significantly increased oligodendrocyte viability in all 3 time-scheduled oxygen-glucose deprivation/reperfusion. Berberine at 2 μM produced peak of protection, and increased cell viability to 83%, 77%, and 79% during 30, 60, 240 min ischemic experiments, respectively (P < 0.001). Berberine significantly attenuated intracellular Ca(2+) rise induced by chemical ischemia, and this effect of berberine was significantly stronger than MK-801 and NBQX (P < 0.001). CONCLUSIONS We concluded that berberine protected OLN-93 oligodendrocyte against ischemic induced excitotoxic injury. Attenuation of intracellular Ca(2+) overload by berberine may be the key mechanism that saved OLN-93 from excitotoxicity damage.
منابع مشابه
Nimodipine Protects PC12 Cells against Oxygen-Glucose Deprivation
The protective effect of a L-type calcium channel blocker, nimodipine, on cell injury induced by oxygen-glucose deprivation (OGD) in PC12 cells was investigated. PC12 cells were exposed to in-vitro oxygen-glucose deprivation (30 minutes and 60 minutes respectively) in the presence or absence of nimodipine (10mM/L) in three different time schedules (pre-24h, pre-3h and concurrently). Cellular vi...
متن کاملPioglitazone alleviates oxygen and glucose deprivation-induced injury by up-regulation of miR-454 in H9c2 cells
Objective(s): Pioglitazone, an anti-diabetic agent, has been widely used to treat type II diabetes. However, the effect of pioglitazone on myocardial ischemia reperfusion injury (MIRI) is still unclear. Herein, the objective of this study is to learn about the regulation and mechanism of pioglitazone effects on oxygen glucose deprivation (OGD)-induced myocardial cell injury.Materials and Method...
متن کاملThe Effect of Noscapine on Oxygen-Glucose Deprivation on Primary Murine Cortical Neurons in High Glucose Condition
AbstractIn the present work we set out to investigate the neuroprotective effects of noscapine (0.5-2 µM) in presence of D-glucose on primary murine foetal cortical neurons after oxygen–glucose deprivation/24 hrs recovery. Cell viability, nitric oxide production and intracellular calcium ([ca2+]i) levels were evaluated by MTT assay, the modified Griess method and Fura-2 respectively. 25 and 100...
متن کاملThe Effect of Noscapine on Oxygen-Glucose Deprivation on Primary Murine Cortical Neurons in High Glucose Condition
AbstractIn the present work we set out to investigate the neuroprotective effects of noscapine (0.5-2 µM) in presence of D-glucose on primary murine foetal cortical neurons after oxygen–glucose deprivation/24 hrs recovery. Cell viability, nitric oxide production and intracellular calcium ([ca2+]i) levels were evaluated by MTT assay, the modified Griess method and Fura-2 respectively. 25 and 100...
متن کاملProtective Effect of 25Mg-Porphyrin-Fullerene Nanoparticles on Oxygen-Glucose Deprivation/Reperfusion Injury in PC12 Cells.
We investigated the effects of 25Mg-Porphyrin-Fullerene nanoparticles, (25MgPMC16) smart ferroporphyrin nanoparticles, on PC12 cells exposed to oxygen-glucose deprivation/reperfusion. In order to explore its effect on cells under oxygen-glucose deprivation conditions, the cultures were pretreated with 25MgPMC16 24 hours prior to oxygen-glucose deprivation/reperfusion. To initiate the oxygen-glu...
متن کامل