The Bilinear Multiplier Problem for the Disc
نویسندگان
چکیده
We present the main ideas of the proof of the following result: The characteristic function of the unit disc in R is the symbol of a bounded bilinear multiplier operator from L1(R) × L2(R) into L(R) when 2 ≤ p1, p2 < ∞ and 1 < p = p1p2 p1+p2 ≤ 2.
منابع مشابه
The Disc as a Bilinear Multiplier
A classical theorem of C. Fefferman [3] says that the characteristic function of the unit disc is not a Fourier multiplier on L(R) unless p = 2. In this article we obtain a result that brings a contrast with the previous theorem. We show that the characteristic function of the unit disc in R is the Fourier multiplier of a bounded bilinear operator from L1(R) × L2(R) into L(R), when 2 ≤ p1, p2 <...
متن کاملOn curvature and the bilinear multiplier problem
We provide sufficient normal curvature conditions on the boundary of a domain D ⊂ R to guarantee unboundedness of the bilinear Fourier multiplier operator TD with symbol χD outside the local L 2 setting, i.e. from L1 (R) × L2 (R) → L ′ 3 (R) with P 1 pj = 1 and pj < 2 for some j. In particular, these curvature conditions are satisfied by any domain D that is locally strictly convex at a single ...
متن کاملThe Bilinear Multiplier Problem for Strictly Convex Compact Sets
We study the question whether characteristic functions of strictly convex compact sets with smooth boundaries in R are L × L → L bounded bilinear Fourier multiplier operators on R × R. When n ≥ 2 we answer this question in the negative outside the local L case, i.e., when 1/p + 1/q = 1/r and 2 ≤ p, q, r′ <∞ fails. Our proof is based on a suitable adaptation of the Kakeya type construction emplo...
متن کاملBounds for the dimension of the $c$-nilpotent multiplier of a pair of Lie algebras
In this paper, we study the Neumann boundary value problem of a class of nonlinear divergence type diffusion equations. By a priori estimates, difference and variation techniques, we establish the existence and uniqueness of weak solutions of this problem.
متن کاملA SIMPLIFIED LAGRANGIAN MULTIPLIER APPROACH FOR FIXED HEAD SHORT-TERM HYDROTHERMAL SCHEDULING
This paper presents a simplifiedlagrangian multiplier based algorithm to solve the fixed head hydrothermalscheduling problem. In fixed head hydrothermal scheduling problem, waterdischarge rate is modeled as quadratic function of hydropower generation andfuel cost is modeled as quadratic function of thermal power generation. Thepower output of each hydro unit varies with the rate of water discha...
متن کامل