Runge-Kutta residual distribution schemes

نویسنده

  • Andrzej Warzynski
چکیده

We are concerned with the solution of time-dependent nonlinear hyperbolic partial differential equations. We investigate the combination of residual distribution methods with a consistent mass matrix (discretisation in space) and a Runge-Kutta-type time stepping (discretisation in time). The introduced nonlinear blending procedure allows us to retain the explicit character of the time stepping procedure. The resulting methods are second order accurate provided that both spatial and temporal approximations are. The proposed approach results in a global linear system that has to be solved at each time-step. An efficient way of solving this system is also proposed. To test and validate this new framework, we perform extensive numerical experiments on a wide variety of classical problems. Key-words: Hyperbolic Conservation Laws, Time-dependent problems, Second order schemes, Residual Distribution, Runge-Kutta time-stepping ∗ School of Computing, University of Leeds, UK † leeds ‡ Inria Bordeaux Sud-Ouest ha l-0 08 65 15 4, v er si on 1 24 S ep 2 01 3 Runge-Kutta Residual Distribution Schemes Résumé : On considère l’approximation de solution de lois de conservation hyperboliques avec une combinaison des mèthodes de type Reisdual Distribution avec des schémas Runge-Kutta en temps. On propose une construction de schéma non-linéaire de type Blended qui ne nécéssite pas la résolution d’un systéme non-linéaire, donc permettan de retenir le caractére explicite de la mèthode. L’approche proposée est validée sur des nombreaux cas test. Mots-clés : Lois de conservation Hyperboliques, problèmes instationnaires, schémas d’ordre deux, Residual Distribution, Runge-Kutta ha l-0 08 65 15 4, v er si on 1 24 S ep 2 01 3 Runge-Kutta Residual Distribution Schemes 3

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Explicit Runge-Kutta Residual Distribution

In this paper we construct spatially consistent second order explicit discretizations for time dependent hyperbolic problems, starting from a given Residual Distribution (RD) discrete approximation of the steady operator. We explore the properties of the RD mass matrices necessary to achieve consistency in space, and finally show how to make use of second order mass lumping to obtain second ord...

متن کامل

An ALE Formulation for Explicit Runge-Kutta Residual Distribution

In this paper we consider the solution of hyperbolic conservation laws on moving meshes by means of an Arbitrary Lagrangian Eulerian (ALE) formulation. In particular we propose an ALE framework for the genuinely explicit residual distribution schemes of (Ricchiuto and Abgrall J.Comput.Phys 229, 2010). The discretizations obtained are thoroughly tested on a large number of benchmarks Key-words: ...

متن کامل

2-stage explicit total variation diminishing preserving Runge-Kutta methods

In this paper, we investigate the total variation diminishing property for a class of 2-stage explicit Rung-Kutta methods of order two (RK2) when applied to the numerical solution of special nonlinear initial value problems (IVPs) for (ODEs). Schemes preserving the essential physical property of diminishing total variation are of great importance in practice. Such schemes are free of spurious o...

متن کامل

Runge-Kutta Defect Control Using Hermite-Birkhoff Interpolation

Two techniques for reliably controlling the defect (residual) in the numerical solution of nonstiff initial value problems were given in [D. This work describes an alternative approach based on Hermite-Birkhoff interpolation. The new approach has two main advantagesmit is applicable to Runge-Kutta schemes of any order, and it gives rise to a defect of the optimum asymptotic order of accuracy. F...

متن کامل

Nonstandard explicit third-order Runge-Kutta method with positivity property

When one solves differential equations, modeling physical phenomena, it is of great importance to take physical constraints into account. More precisely, numerical schemes have to be designed such that discrete solutions satisfy the same constraints as exact solutions. Based on general theory for positivity, with an explicit third-order Runge-Kutta method (we will refer to it as RK3 method) pos...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Sci. Comput.

دوره 62  شماره 

صفحات  -

تاریخ انتشار 2013