Resolution of established cardiac hypertrophy and fibrosis and prevention of systolic dysfunction in a transgenic rabbit model of human cardiomyopathy through thiol-sensitive mechanisms.

نویسندگان

  • Raffaella Lombardi
  • Gabriela Rodriguez
  • Suet Nee Chen
  • Crystal M Ripplinger
  • Wenwen Li
  • Junjie Chen
  • James T Willerson
  • Sandro Betocchi
  • Samuel A Wickline
  • Igor R Efimov
  • Ali J Marian
چکیده

BACKGROUND Cardiac hypertrophy, the clinical hallmark of hypertrophic cardiomyopathy (HCM), is a major determinant of morbidity and mortality not only in HCM but also in a number of cardiovascular diseases. There is no effective therapy for HCM and generally for cardiac hypertrophy. Myocardial oxidative stress and thiol-sensitive signaling molecules are implicated in pathogenesis of hypertrophy and fibrosis. We posit that treatment with N-acetylcysteine, a precursor of glutathione, the largest intracellular thiol pool against oxidative stress, could reverse cardiac hypertrophy and fibrosis in HCM. METHODS AND RESULTS We treated 2-year-old beta-myosin heavy-chain Q403 transgenic rabbits with established cardiac hypertrophy and preserved systolic function with N-acetylcysteine or a placebo for 12 months (n=10 per group). Transgenic rabbits in the placebo group had cardiac hypertrophy, fibrosis, systolic dysfunction, increased oxidized to total glutathione ratio, higher levels of activated thiol-sensitive active protein kinase G, dephosphorylated nuclear factor of activated T cells (NFATc1) and phospho-p38, and reduced levels of glutathiolated cardiac alpha-actin. Treatment with N-acetylcysteine restored oxidized to total glutathione ratio, normalized levels of glutathiolated cardiac alpha-actin, reversed cardiac and myocyte hypertrophy and interstitial fibrosis, reduced the propensity for ventricular arrhythmias, prevented cardiac dysfunction, restored myocardial levels of active protein kinase G, and dephosphorylated NFATc1 and phospho-p38. CONCLUSIONS Treatment with N-acetylcysteine, a safe prodrug against oxidation, reversed established cardiac phenotype in a transgenic rabbit model of human HCM. Because there is no effective pharmacological therapy for HCM and given that hypertrophy, fibrosis, and cardiac dysfunction are common and major predictors of clinical outcomes, the findings could have implications in various cardiovascular disorders.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dysfunction in a Transgenic Rabbit Model of Human Cardiomyopathy Through Resolution of Established Cardiac Hypertrophy and Fibrosis and Prevention of Systolic

Ali Junjie Chen, James T. Willerson, Sandro Betocchi, Samuel A. Wickline, Igor R. Efimov and Raffaella Lombardi, Gabriela Rodriguez, Suet Nee Chen, Crystal M. Ripplinger, Wenwen Li, Thiol-Sensitive Mechanisms Dysfunction in a Transgenic Rabbit Model of Human Cardiomyopathy Through Resolution of Established Cardiac Hypertrophy and Fibrosis and Prevention of Systolic Print ISSN: 0009-7322. Online...

متن کامل

Tissue Doppler imaging consistently detects myocardial contraction and relaxation abnormalities, irrespective of cardiac hypertrophy, in a transgenic rabbit model of human hypertrophic cardiomyopathy.

BACKGROUND Hypertrophic cardiomyopathy (HCM) is diagnosed clinically by the presence of left ventricular hypertrophy (LVH). However, LVH is absent in a significant number of genotype-positive patients. Because myocyte dysfunction and disarray are the primary abnormalities in HCM, we reasoned that tissue Doppler imaging could identify contraction and relaxation abnormalities, irrespective of hyp...

متن کامل

Cardiac dysfunction is attenuated by ginkgolide B via reducing oxidative stress and fibrosis in diabetic rats

Objective(s): Diabetic cardiomyopathy is a leading factor of high morbidity and mortality in diabetic patients. Our previous results revealed that ginkgolide B alleviates endothelial dysfunction in diabetic rats. This study aimed to investigate the effect of ginkgolide B on cardiac dysfunction and its mechanism in diabetic rats.Materials and Methods:<...

متن کامل

Morphological and functional alterations in ventricular myocytes from male transgenic mice with hypertrophic cardiomyopathy.

Familial hypertrophic cardiomyopathy (FHC) is a human genetic disorder caused by mutations in sarcomeric proteins. It is generally characterized by cardiac hypertrophy, fibrosis, and myocyte disarray. A transgenic mouse model of FHC with mutations in the actin-binding domain of the alpha-myosin heavy chain (MyHC) gene displays many phenotypes similar to human FHC. At 4 months, male transgenic (...

متن کامل

Diabetic Cardiomyopathy; Summary of 41 Years

Patients with diabetes have an increased risk for development of cardiomyopathy, even in the absence of well known risk factors like coronary artery disease and hypertension. Diabetic cardiomyopathy was first recognized approximately four decades ago. To date, several pathophysiological mechanisms thought to be responsible for this new entity have also been recognized. In the presence of hyperg...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Circulation

دوره 119 10  شماره 

صفحات  -

تاریخ انتشار 2009