Cusps of Minimal Non-compact Arithmetic Hyperbolic 3-orbifolds
نویسنده
چکیده
In this paper we count the number of cusps of minimal non-compact finite volume arithmetic hyperbolic 3-orbifolds. We show that for each N , the orbifolds of this kind which have exactly N cusps lie in a finite set of commensurability classes, but either an empty or an infinite number of isometry classes.
منابع مشابه
Cusps of arithmetic orbifolds
This thesis investigates cusp cross-sections of arithmetic real, complex, and quaternionic hyperbolic n–orbifolds. We give a smooth classification of these submanifolds and analyze their induced geometry. One of the primary tools is a new subgroup separability result for general arithmetic lattices. Cusps of arithmetic orbifolds 1
متن کاملHyperbolic Orbifolds of Minimal Volume
We provide a survey of hyperbolic orbifolds of minimal volume, starting with the results of Siegel in two dimensions and with the contributions of Gehring, Martin and others in three dimensions. For higher dimensions, we summarise some of the most important results, due to Belolipetsky, Emery and Hild, by discussing related features such as hyperbolic Coxeter groups, arithmeticity and consequen...
متن کاملPeripheral separability and cusps of arithmetic hyperbolic orbifolds
For X = R , C , or H , it is well known that cusp cross-sections of finite volume X –hyperbolic (n + 1)–orbifolds are flat n–orbifolds or almost flat orbifolds modelled on the (2n + 1)–dimensional Heisenberg group N2n+1 or the (4n + 3)–dimensional quaternionic Heisenberg group N4n+3(H). We give a necessary and sufficient condition for such manifolds to be diffeomorphic to a cusp cross-section o...
متن کاملVolumes of Picard modular surfaces
We show that the conjectural cusped complex hyperbolic 2-orbifolds of minimal volume are the two smallest arithmetic complex hyperbolic 2orbifolds. We then show that every arithmetic cusped complex hyperbolic 2-manifold of minimal volume covers one of these two orbifolds. We also give all minimal volume manifolds that simultaneously cover both minimal orbifolds.
متن کاملOn Minimal Covolume Hyperbolic Lattices
We study lattices with a non-compact fundamental domain of small volume in hyperbolic space Hn. First, we identify the arithmetic lattices in Isom+Hn of minimal covolume for even n up to 18. Then, we discuss the related problem in higher odd dimensions and provide solutions for n = 11 and n = 13 in terms of the rotation subgroup of certain Coxeter pyramid groups found by Tumarkin. The results d...
متن کامل