Design and Implementation of a Biomimetic Robotic Fish

نویسنده

  • Hongan Wang
چکیده

Design and Implementation of a Biomimetic Robotic Fish Hongan Wang The study of biomimetic robotic fish has received a growing amount of research interest in the past several years. This thesis describes the development and testing of a novel mechanical design of a biomimetic robotic fish. The robotic fish has a structure which uses oscillating caudal fins and a pair of pectoral fins to generate fish-like swimming motion. This unique design enables the robotic fish to swim in two swimming modes, namely Body/Caudal Fin (BCF) and Median/Paired Fin (MPF). In order to combine BCF mode with MPF mode, the robotic fish utilizes a flexible posterior body, an oscillating foil actuated by three servomotors, and one pair of pectoral fins individually driven by four servomotors. Effective servo motions and swimming gaits are then proposed to control its swimming behaviour. Based on these results, fish-like swimming can be achieved including forward, backward, and turning motions. An experimental setup for the robotic fish was implemented using machine vision position and velocity measurement. The experimental results show that the robotic fish performed well in terms of manoeuvrability and cruise speed. Based on the experimental data, a low order dynamic model is proposed and identified. Together, these results provide an experimental framework for development of new modelling and control techniques for biomimetic robotic fish.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mechatronics and buoyancy implementation of robotic fish swimming with modular fin mechanisms

This paper presents an underwater vehicle mimicking the undulating fins of fish. To mimic the actual flexible fins of real fish, a fin-like mechanism is modelled with a series of connecting linkages. By virtue of a specially designed strip, each link is able to turn and slide with respect to the adjacent link. The driving linkages are used to form a mechanical fin consisting of several fin segm...

متن کامل

Simulation and optimization of live fish locomotion in a biomimetic robot fish

This paper presents simplified hydrodynamics model for a biomimetic robot fish based on quantitative morphological and kinematic parameters of crangiform fish. The motion of four Pangasius sanitwongsei with different length and swimming speed were recorded by the digital particle image velocimetry (DPIV) and image processing methods and optimal coefficients of the motion equations and appropria...

متن کامل

Modeling of Biomimetic Robotic Fish Propelled by An Ionic Polymer–Metal Composite Caudal Fin

In this paper, a physics-based model is proposed for a biomimetic robotic fish propelled by an ionic polymer–metal composite (IPMC) actuator. Inspired by the biological fin structure, a passive plastic fin is further attached to the IPMC beam. The model incorporates both IPMC actuation dynamics and the hydrodynamics, and predicts the steady-state cruising speed of the robot under a given period...

متن کامل

Optimization of the Kinematic Model for Biomimetic Robotic Fish with Rigid Headshaking Mitigation

Biomimetic robotic fish is a new type of underwater robot with many superior characteristics such as high movement speed, high motion efficiency, high energy efficiency, and so on. However, the traditional kinematic model for biomimetic robotic fish has many shortcomings which limit their movement speed, such as the rigid shakes of the fish’s head when it swims, which is caused by neglecting th...

متن کامل

Biomimetic Motion Planning of an Undulating Robotic Fish Fin

This paper presents a locomotion control implementation of a robotic system mimicking the undulating fins of fish. To mimic the actual flexible fin of a real fish, we created a ribbon fin type actuation device with a series of connecting linkages and attached it to the robotic fish. By virtue of a specially designed strip with a slider, each link is able to turn and slide with respect to the ad...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010