Merging Mixture Components for Cell Population Identification in Flow Cytometry Data The flowMerge package
نویسندگان
چکیده
منابع مشابه
Merging Mixture Components for Cell Population Identification in Flow Cytometry
We present a framework for the identification of cell subpopulations in flow cytometry data based on merging mixture components using the flowClust methodology. We show that the cluster merging algorithm under our framework improves model fit and provides a better estimate of the number of distinct cell subpopulations than either Gaussian mixture models or flowClust, especially for complicated ...
متن کاملflowPeaks: a fast unsupervised clustering for flow cytometry data via K-means and density peak finding
MOTIVATION For flow cytometry data, there are two common approaches to the unsupervised clustering problem: one is based on the finite mixture model and the other on spatial exploration of the histograms. The former is computationally slow and has difficulty to identify clusters of irregular shapes. The latter approach cannot be applied directly to high-dimensional data as the computational tim...
متن کاملRapid cell population identification in flow cytometry data.
We have developed flowMeans, a time-efficient and accurate method for automated identification of cell populations in flow cytometry (FCM) data based on K-means clustering. Unlike traditional K-means, flowMeans can identify concave cell populations by modelling a single population with multiple clusters. flowMeans uses a change point detection algorithm to determine the number of sub-population...
متن کاملflowFP: Fingerprinting for Flow Cytometry
Abstract Background A new software package called flowFP for the analysis of flow cytometry data is introduced. The package, which is tightly integrated with other Bioconductor software for analysis of flow cytometry, provides tools to transform raw flow cytometry data into a form suitable for direct input into conventional statistical analysis and empirical modeling software tools. The approac...
متن کاملStatistical mixture modeling for cell subtype identification in flow cytometry.
Statistical mixture modeling provides an opportunity for automated identification and resolution of cell subtypes in flow cytometric data. The configuration of cells as represented by multiple markers simultaneously can be modeled arbitrarily well as a mixture of Gaussian distributions in the dimension of the number of markers. Cellular subtypes may be related to one or multiple components of s...
متن کامل