Ricci Flow , Entropy and Optimal Transportation ∗

نویسندگان

  • ROBERT J. MCCANN
  • PETER M. TOPPING
چکیده

Let a smooth family of Riemannian metrics g(τ) satisfy the backwards Ricci flow equation on a compact oriented n-dimensional manifold M . Suppose two families of normalized n-forms ω(τ) ≥ 0 and ω̃(τ) ≥ 0 satisfy the forwards (in τ) heat equation on M generated by the connection Laplacian ∆g(τ). If these n-forms represent two evolving distributions of particles over M , the minimum root-mean-square distance W2(ω(τ), ω̃(τ), τ) to transport the particles of ω(τ) onto those of ω̃(τ) is shown to be nonincreasing as a function of τ , without sign conditions on the curvature of (M, g(τ)). Moreover, this contractivity property is shown to characterise supersolutions to the Ricci flow.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

L - optimal transportation for ricci flow ∗

We introduce the notion of L-optimal transportation, and use it to construct a natural monotonic quantity for Ricci flow which includes a selection of other monotonicity results, including some key discoveries of Perelman [13] (both related to entropy and to L-length) and a recent result of McCann and the author [11].

متن کامل

Optimal Transportation and Monotonic Quantities on Evolving Manifolds

In this note we will adapt Topping’s L-optimal transportation theory for Ricci flow to a more general situation, i.e. to a closed manifold (M, gij(t)) evolving by ∂tgij = −2Sij , where Sij is a symmetric tensor field of (2,0)-type on M . We extend some recent results of Topping, Lott and Brendle, generalize the monotonicity of List’s (and hence also of Perelman’s) W-entropy, and recover the mon...

متن کامل

Ricci curvature, entropy and optimal transport

This is the lecture notes on the interplay between optimal transport and Riemannian geometry. On a Riemannian manifold, the convexity of entropy along optimal transport in the space of probability measures characterizes lower bounds of the Ricci curvature. We then discuss geometric properties of general metric measure spaces satisfying this convexity condition. Mathematics Subject Classificatio...

متن کامل

Ricci curvature , entropy and optimal transport – Summer School in Grenoble 2009 – ‘ Optimal Transportation : Theory and Applications

These notes are the planned contents of my lectures. Some parts could be only briefly explained or skipped due to the lack of time or possible overlap with other lectures. The aim of these lectures is to review the recent development on the relation between optimal transport theory and Riemannian geometry. Ricci curvature is the key ingredient. Optimal transport theory provides a good character...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008