PDE-based Morphology for Matrix Fields: Numerical Solution Schemes
نویسندگان
چکیده
Tensor fields are important in digital imaging and computer vision. Hence there is a demand for morphological operations to perform e.g. shape analysis, segmentation or enhancement procedures. Recently, fundamental morphological concepts have been transferred to the setting of fields of symmetric positive definite matrices, which are symmetric rank two tensors. This has been achieved by a matrixvalued extension of the nonlinear morphological partial differential equations (PDEs) for dilation and erosion known for grey scale images. Having these two basic operations at our disposal, more advanced morphological operators such as top hats or morphological derivatives for matrix fields with symmetric, positive semidefinite matrices can be constructed. The approach realises a proper coupling of the matrix channels rather than treating them independently. However, from the algorithmic side the usual scalar morphological PDEs are transport equations that require special upwind-schemes or novel high-accuracy predictor-corrector approaches for their adequate numerical treatment. In this chapter we propose the non-trivial extension of these schemes to the matrix-valued setting by exploiting the special algebraic structure available for symmetric matrices. Furthermore we compare the performance and juxtapose the results of these novel matrix-valued high-resolution-type (HRT) numerical schemes by considering top hats and morphological derivatives applied to artificial and real world data sets.
منابع مشابه
Highly Accurate PDE-Based Morphology for General Structuring Elements
Modelling the morphological processes of dilation and erosion with convex structuring elements with partial differential equations (PDEs) allows for digital scalability and subpixel accuracy. However, numerical schemes suffer from blur by dissipative artifacts. In our paper we present a family of so-called flux-corrected transport (FCT) schemes that addresses this problem for arbitrary convex s...
متن کاملImage coupling , restoration and enhancement via PDE
We present a new approach based on Partial Differential Equations (PDE) to restore noisy blurred images. After studying the methods to denoise images, staying as close as possible to the input image and methods to restore discontinuities, we will propose a new scheme which combines all this schemes. Quan-tiied numerical test on a synthetic image will demon-state the eeciency of our scheme and t...
متن کاملThe new implicit finite difference scheme for two-sided space-time fractional partial differential equation
Fractional order partial differential equations are generalizations of classical partial differential equations. Increasingly, these models are used in applications such as fluid flow, finance and others. In this paper we examine some practical numerical methods to solve a class of initial- boundary value fractional partial differential equations with variable coefficients on a finite domain. S...
متن کاملHighly Accurate Schemes for PDE-Based Morphology with General Structuring Elements
The two fundamental operations in morphological image processing are dilation and erosion. These processes are defined via structuring elements. It is of practical interest to consider a variety of structuring element shapes. The realisation of dilation/erosion for convex structuring elements by use of partial differential equations (PDEs) allows for digital scalability and subpixel accuracy. H...
متن کاملBiorthogonal wavelet-based full-approximation schemes for the numerical solution of elasto-hydrodynamic lubrication problems
Biorthogonal wavelet-based full-approximation schemes are introduced in this paper for the numerical solution of elasto-hydrodynamic lubrication line and point contact problems. The proposed methods give higher accuracy in terms of better convergence with low computational time, which have been demonstrated through the illustrative problems.
متن کامل