A newly identified myomegalin isoform functions in Golgi microtubule organization and ER-Golgi transport.
نویسندگان
چکیده
The Golgi of mammalian cells is known to be a major microtubule-organizing site that requires microtubules for its organization and protein trafficking. However, the mechanisms underlying the microtubule organization of the Golgi remain obscure. We used immunoprecipitation coupled with mass spectrometry to identify a widely expressed isoform of the poorly characterized muscle protein myomegalin. This newly identified isoform, myomegalin variant 8 (MMG8), localized predominantly to cis-Golgi networks by interacting with AKAP450 (also known as AKAP9), and this interaction with AKAP450 was required for the stability of both proteins. Disrupting MMG8 expression affected endoplasmic reticulum (ER)-to-Golgi trafficking and caused Golgi fragmentation. Furthermore, MMG8 associated with γ-tubulin complexes and with the microtubule plus-end tracking protein EB1 (also known as MAPRE1), and was required for the Golgi localization of these two molecules. On the Golgi, γ-tubulin complexes mediated microtubule nucleation, whereas EB1 functioned in ER-to-Golgi trafficking. These results indicate that MMG8 participates in Golgi microtubule organization and thereby plays a crucial role in the organization and function of the Golgi.
منابع مشابه
Myomegalin is necessary for the formation of centrosomal and Golgi-derived microtubules
The generation of cellular microtubules is initiated at specific sites such as the centrosome and the Golgi apparatus that contain nucleation complexes rich in γ-tubulin. The microtubule growing plus-ends are stabilized by plus-end tracking proteins (+TIPs), mainly EB1 and associated proteins. Myomegalin was identified as a centrosome/Golgi protein associated with cyclic nucleotide phosphodiest...
متن کاملMicrotubule stability, Golgi organization, and transport flux require dystonin-a2–MAP1B interaction
Loss of function of dystonin cytoskeletal linker proteins causes neurodegeneration in dystonia musculorum (dt) mutant mice. Although much investigation has focused on understanding dt pathology, the diverse cellular functions of dystonin isoforms remain poorly characterized. In this paper, we highlight novel functions of the dystonin-a2 isoform in mediating microtubule (MT) stability, Golgi org...
متن کاملRegulation of microtubule-dependent recycling at the trans-Golgi network by Rab6A and Rab6A'.
The small GTPase rab6A but not the isoform rab6A' has previously been identified as a regulator of the COPI-independent recycling route that carries Golgi-resident proteins and certain toxins from the Golgi to the endoplasmic reticulum (ER). The isoform rab6A' has been implicated in Golgi-to-endosomal recycling. Because rab6A but not A', binds rabkinesin6, this motor protein is proposed to medi...
متن کاملMyomegalin is a novel protein of the golgi/centrosome that interacts with a cyclic nucleotide phosphodiesterase.
Subcellular targeting of the components of the cAMP-dependent pathway is thought to be essential for intracellular signaling. Here we have identified a novel protein, named myomegalin, that interacts with the cyclic nucleotide phosphodiesterase PDE4D, thereby targeting it to particulate structures. Myomegalin is a large 2,324-amino acid protein mostly composed of alpha-helical and coiled-coil s...
متن کاملMicrotubule depolymerization inhibits transport of cathepsin D from the Golgi apparatus to lysosomes.
Lysosomes as well as a prelysosomal compartment rich in the mannose 6-phosphate receptor are clustered close to the Golgi apparatus in the perinuclear region of the microtubule organizing center in interphase human skin fibroblasts. The spatial organization of these organelles depends on an intact microtubule network. Depolymerization of the microtubules by treatment of cells with nocodazole le...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of cell science
دوره 127 Pt 22 شماره
صفحات -
تاریخ انتشار 2014