Patterns of Repeat-Induced Point Mutation in Transposable Elements of Basidiomycete Fungi
نویسندگان
چکیده
Transposable elements (TEs) are ubiquitous genomic parasites that have prompted the evolution of genome defense systems that restrict their activity. Repeat-induced point mutation (RIP) is a homology-dependent genome defense that introduces C-to-T transition mutations in duplicated DNA sequences and is thought to control the proliferation of selfish repetitive DNA. Here, we determine the taxonomic distribution of hypermutation patterns indicative of RIP among basidiomycetes. We quantify C-to-T transition mutations in particular di- and trinucleotide target sites for TE-like sequences from nine fungal genomes. We find evidence of RIP-like patterns of hypermutation at TpCpG trinucleotide sites in repetitive sequences from all species of the Pucciniomycotina subphylum of the Basidiomycota, Microbotryum lychnidis-dioicae, Puccinia graminis, Melampsora laricis-populina, and Rhodotorula graminis. In contrast, we do not find evidence for RIP-like hypermutation in four species of the Agaricomycotina and Ustilaginomycotina subphyla of the Basidiomycota. Our results suggest that a RIP-like process and the specific nucleotide context for mutations are conserved within the Pucciniomycotina subphylum. These findings imply that coevolutionary interactions between TEs and a hypermutating genome defense are stable over long evolutionary timescales.
منابع مشابه
Repeat-induced point mutation and the population structure of transposable elements in Microbotryum violaceum.
Repeat-induced point mutation (RIP) is a genome defense in fungi that hypermutates repetitive DNA and is suggested to limit the accumulation of transposable elements. The genome of Microbotryum violaceum has a high density of transposable elements compared to other fungi, but there is also evidence of RIP activity. This is the first report of RIP in a basidiomycete and was obtained by sequencin...
متن کاملMassive Expansion of Gypsy-Like Retrotransposons in Microbotryum Fungi
Transposable elements (TEs) are selfish, autonomously replicating DNA sequences that constitute a major component of eukaryotic genomes and contribute to genome evolution through their movement and amplification. Many fungal genomes, including the anther-smut fungi in the basidiomycete genus Microbotryum, have genome defense mechanisms, such as repeat-induced point mutation (RIP), which hypermu...
متن کاملEffector diversification within compartments of the Leptosphaeria maculans genome affected by Repeat-Induced Point mutations
Fungi are of primary ecological, biotechnological and economic importance. Many fundamental biological processes that are shared by animals and fungi are studied in fungi due to their experimental tractability. Many fungi are pathogens or mutualists and are model systems to analyse effector genes and their mechanisms of diversification. In this study, we report the genome sequence of the phytop...
متن کاملGenome comparison of barley and maize smut fungi reveals targeted loss of RNA silencing components and species-specific presence of transposable elements.
Ustilago hordei is a biotrophic parasite of barley (Hordeum vulgare). After seedling infection, the fungus persists in the plant until head emergence when fungal spores develop and are released from sori formed at kernel positions. The 26.1-Mb U. hordei genome contains 7113 protein encoding genes with high synteny to the smaller genomes of the related, maize-infecting smut fungi Ustilago maydis...
متن کاملEvidence of ectopic recombination and a repeat-induced point (RIP) mutation in the genome of Sclerotinia sclerotiorum, the agent responsible for white mold
Two retrotransposons from the superfamilies Copia and Gypsy named as Copia-LTR_SS and Gypsy-LTR_SS, respectively, were identified in the genomic bank of Sclerotinia sclerotiorum. These transposable elements (TEs) contained direct and preserved long terminal repeats (LTR). Domains related to codified regions for gag protein, integrase, reverse transcriptase and RNAse H were identified in Copia-L...
متن کامل