Bio-inspired electron-delivering system for reductive activation of dioxygen at metal centres towards artificial flavoenzymes

نویسندگان

  • Yoann Roux
  • Rémy Ricoux
  • Frédéric Avenier
  • Jean-Pierre Mahy
چکیده

Development of artificial systems, capable of delivering electrons to metal-based catalysts for the reductive activation of dioxygen, has been proven very difficult for decades, constituting a major scientific lock for the elaboration of environmentally friendly oxidation processes. Here we demonstrate that the incorporation of a flavin mononucleotide (FMN) in a water-soluble polymer, bearing a locally hydrophobic microenvironment, allows the efficient reduction of the FMN by NADH. This supramolecular entity is then capable of catalysing a very fast single-electron reduction of manganese(III) porphyrin by splitting the electron pair issued from NADH. This is fully reminiscent of the activity of natural reductases such as the cytochrome P450 reductases with kinetic parameters, which are three orders of magnitude faster compared with other artificial systems. Finally, we show as a proof of concept that the reduced manganese porphyrin activates dioxygen and catalyses the oxidation of organic substrates in water.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electron transfer and catalysis with high-valent metal-oxo complexes.

High-valent metal-oxo complexes are produced by reductive activation of dioxygen via reduction of metal complexes with reductants and dioxygen. Photoinduced electron transfer from substrates to metal complexes with dioxygen also leads to the generation of high-valent metal-oxo complexes that can oxygenate substrates. In such a case metal complexes act as a photocatalyst to oxygenate substrates ...

متن کامل

Molecular Basis for Converting (2S)-Methylsuccinyl-CoA Dehydrogenase into an Oxidase.

Although flavoenzymes have been studied in detail, the molecular basis of their dioxygen reactivity is only partially understood. The members of the flavin adenosine dinucleotide (FAD)-dependent acyl-CoA dehydrogenase and acyl-CoA oxidase families catalyze similar reactions and share common structural features. However, both enzyme families feature opposing reaction specificities in respect to ...

متن کامل

Redox inactive metal ion triggered N-dealkylation by an iron catalyst with dioxygen activation: a lesson from lipoxygenases.

Utilization of dioxygen as the terminal oxidant at ambient temperature is always a challenge in redox chemistry, because it is hard to oxidize a stable redox metal ion like iron(III) to its high oxidation state to initialize the catalytic cycle. Inspired by the dioxygenation and co-oxidase activity of lipoxygenases, herein, we introduce an alternative protocol to activate the sluggish iron(III)...

متن کامل

Novel Bifunctional Aluminum for Oxidation of MTBE and TAME

The transformation of methyl tert-butyl ether ~MTBE! and tert-amyl methyl ether ~TAME! using bifunctional aluminum in the presence of dioxygen ~O2! has been examined. Bifunctional aluminum, prepared by sulfating zero-valent aluminum with sulfuric acid, is an innovative extension of zero-valent metal technology. It has a dual functionality of simultaneously decomposing both reductively and oxida...

متن کامل

"Oxidatively induced" reductive elimination of dioxygen from an eta2-peroxopalladium(II) complex promoted by electron-deficient alkenes.

The first example of associative displacement of dioxygen from a peroxopalladium(II) complex is reported. Electron-deficient alkenes, p-X-trans-beta-nitrostyrene (X = OCH3, CH3, H, F, Br, CF3, NO2), react quantitatively with (bc)Pd(eta2-O2) (bc = bathocuproine) in dichloromethane at room temperature to form the corresponding palladium(0)-alkene complexes. Mechanistic studies indicate that ligan...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2015