How localized are energy dissipation processes in nanoscale interactions?
نویسندگان
چکیده
We describe fundamental energy dissipation in dynamic nanoscale processes in terms of the localization of the interactions. In this respect, the areal density of the energy dissipated per cycle and the effective area of interaction in which each process occurs are calculated for four elementary dissipative processes. It is the ratio between these two, which we term M, that provides information about how localized the interactions are. While our results are general, we use concepts from dynamic atomic force microscopy to describe the physical phenomenon. We show that neither the phase lag, nor the magnitude of the energy dissipated alone provide information about how dissipative processes are localized. Instead, M has to be considered.
منابع مشابه
Determination and simulation of nanoscale energy dissipation processes in amplitude modulation AFM.
We develop a theoretical framework that explains the use of amplitude modulation AFM to measure and identify energy dissipation processes at the nanoscale. The variation of the dissipated energy on a surface by a vibrating tip as a function of its amplitude has a shape that singles out the dissipative process. The method is illustrated by calculating the dynamic-dissipation curves for surface a...
متن کاملEnergy Dissipation and Transport in Nanoscale Devices
Understanding energy dissipation and transport in nanoscale structures is of great importance for the design of energy-efficient circuits and energy-conversion systems. This is also a rich domain for fundamental discoveries at the intersection of electron, lattice (phonon), and optical (photon) interactions. This review presents recent progress in understanding and manipulation of energy dissip...
متن کاملThermomechanical Interactions Due to Hall Current in Transversely Isotropic Thermoelastic with and Without Energy Dissipation with Two Temperatures and Rotation
The present paper is concerned with the investigation of disturbances in a homogeneous transversely isotropic thermoelastic rotating medium with two temperatures, in the presence of the combined effects of Hall currents and magnetic field due to thermomechanical sources. The formulation is applied to the thermoelasticity theories developed by Green-Naghdi Theories of Type-II and Type-III. ...
متن کاملEnergy dissipation of nanoconfined hydration layer: Long-range hydration on the hydrophilic solid surface
The hydration water layer (HWL), a ubiquitous form of water on the hydrophilic surfaces, exhibits anomalous characteristics different from bulk water and plays an important role in interfacial interactions. Despite extensive studies on the mechanical properties of HWL, one still lacks holistic understanding of its energy dissipation, which is critical to characterization of viscoelastic materia...
متن کاملEnergy dissipation in atomic force microscopy and atomic loss processes.
Atomic scale dissipation is of great interest in nanomechanics and atomic manipulation. We present dissipation measurements with a linearized, ultra-small amplitude atomic force microscope which is capable of measuring dissipation at chosen, fixed separations. We show that the dynamic dissipation in the noncontact regime is of the order of a few 10-100 meV per cycle. This dissipation is likely ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nanotechnology
دوره 22 34 شماره
صفحات -
تاریخ انتشار 2011