Angiotensin II AT2 receptors inhibit proximal tubular Na+-K+-ATPase activity via a NO/cGMP-dependent pathway.
نویسندگان
چکیده
Angiotensin II AT2 receptors act as a functional antagonist for the AT1 receptors in various tissues. We previously reported that activation of the renal AT2 receptors promotes natriuresis and diuresis; however, the mechanism is not known. The present study was designed to investigate whether activation of AT2 receptors affects the activity of Na+-K+-ATPase (NKA), an active tubular sodium transporter, in the proximal tubules isolated from Sprague-Dawley rats. The AT2 receptor agonist CGP-42112 (10(-10)-10(-7) M) produced a dose-dependent inhibition of NKA activity (9-38%); the inhibition was attenuated by the presence of the AT2 receptor antagonist PD-123319 (1 microM), suggesting the involvement of the AT2 receptors. The AT1 receptor antagonist losartan (1 microM) did not affect the CGP-42112 (100 nM)-induced inhibition of NKA activity. The presence of guanylyl cyclase inhibitor ODQ (10 microM) and the nitric oxide (NO) synthase inhibitor N(omega)-nitro-L-arginine methyl ester (L-NAME; 100 microM) abolished the CGP-42112 (100 nM)-induced NKA inhibition. ANG II (100 nM), in the presence of losartan, significantly inhibited NKA activity; the inhibition was attenuated by PD-123319. CGP-42112 also, in a dose-dependent manner, stimulated NO production (approximately 0-230%) and cGMP accumulation (approximately 25-100%). The CGP-42112 (100 nM)-induced NO and cGMP increases were abolished by the AT2 receptor antagonist PD-123319, ODQ, and L-NAME. The data suggest that the activation of the AT2 receptor via stimulation of the NO/cGMP pathway causes inhibition of NKA activity in the proximal tubules. This phenomenon provides a plausible mechanism responsible for the AT2 receptor-mediated natriuresis-diuresis in rodents.
منابع مشابه
Angiotensin II type 2 receptor agonist directly inhibits proximal tubule sodium pump activity in obese but not in lean Zucker rats.
We have reported recently that the renal angiotensin II type 2 (AT2) receptors are upregulated and involved in promoting natriuresis/diuresis in obese but not in lean Zucker rats. In the present study, we tested the hypothesis that there is an enhanced AT2 receptor signaling via NO/cGMP pathway leading to greater inhibition of the Na(+), K(+)-ATPase (NKA) activity in the proximal tubules (PT) o...
متن کاملEffects of Nitric Oxide on Renal Proximal Tubular Na+ Transport
Nitric oxide (NO) has a wide variety of physiological functions in the kidney. Besides the regulatory effects in intrarenal haemodynamics and glomerular microcirculation, in vivo studies reported the diuretic and natriuretic effects of NO. However, opposite results showing the stimulatory effect of NO on Na+ reabsorption in the proximal tubule led to an intense debate on its physiological roles...
متن کاملDefective nitric oxide production impairs angiotensin II-induced Na-K-ATPase regulation in spontaneously hypertensive rats.
Angiotensin (ANG) II via ANG II type 1 receptors (AT1R) activates renal sodium transporters including Na-K-ATPase and regulates sodium homeostasis and blood pressure. It is reported that at a high concentration, ANG II either inhibits or fails to stimulate Na-K-ATPase. However, the mechanisms for these phenomena are not clear. Here, we identified the signaling molecules involved in regulation o...
متن کاملAngiotensin II stimulation of Na+/K+ATPase activity and cell growth by calcium-independent pathway in MCF-7 breast cancer cells.
Here we demonstrated, by RT-PCR analysis, the expression of both angiotensin II (Ang II) receptor subtypes, AT1 and AT2, in a breast cancer epithelial cell line, MCF-7. Ang II was not able to affect the intracellular Ca2+ concentration in Fura-2 loaded cells suggesting that AT1-mediated phospholipid hydrolysis is not involved in its intracellular transduction pathway. Ang II modulated the activ...
متن کاملAngiotensin II-mediated biphasic regulation of proximal tubular Na+/H+ exchanger 3 is impaired during oxidative stress.
Angiotensin (ANG) II via AT1 receptors (AT1Rs) maintains sodium homeostasis by regulating renal sodium transporters including Na(+)/H(+) exchanger 3 (NHE3) in a biphasic manner. Low-ANG II concentration stimulates whereas high concentrations inhibit NHE3 activity. Oxidative stress has been shown to upregulate AT1R function that could modulate the ANG II-mediated NHE3 regulation. This study was ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Renal physiology
دوره 290 6 شماره
صفحات -
تاریخ انتشار 2006