Drosophila Cbp53E Regulates Axon Growth at the Neuromuscular Junction
نویسندگان
چکیده
Calcium is a primary second messenger in all cells that functions in processes ranging from cellular proliferation to synaptic transmission. Proper regulation of calcium is achieved through numerous mechanisms involving channels, sensors, and buffers notably containing one or more EF-hand calcium binding domains. The Drosophila genome encodes only a single 6 EF-hand domain containing protein, Cbp53E, which is likely the prototypic member of a small family of related mammalian proteins that act as calcium buffers and calcium sensors. Like the mammalian homologs, Cbp53E is broadly though discretely expressed throughout the nervous system. Despite the importance of calcium in neuronal function and growth, nothing is known about Cbp53E's function in neuronal development. To address this deficiency, we generated novel null alleles of Drosophila Cbp53E and examined neuronal development at the well-characterized larval neuromuscular junction. Loss of Cbp53E resulted in increases in axonal branching at both peptidergic and glutamatergic neuronal terminals. This overgrowth could be completely rescued by expression of exogenous Cbp53E. Overexpression of Cbp53E, however, only affected the growth of peptidergic neuronal processes. These findings indicate that Cbp53E plays a significant role in neuronal growth and suggest that it may function in both local synaptic and global cellular mechanisms.
منابع مشابه
Drosophila cyfip Regulates Synaptic Development and Endocytosis by Suppressing Filamentous Actin Assembly
The formation of synapses and the proper construction of neural circuits depend on signaling pathways that regulate cytoskeletal structure and dynamics. After the mutual recognition of a growing axon and its target, multiple signaling pathways are activated that regulate cytoskeletal dynamics to determine the morphology and strength of the connection. By analyzing Drosophila mutations in the cy...
متن کاملHighwire Regulates Synaptic Growth in Drosophila
The formation, stabilization, and growth of synaptic connections are dynamic and highly regulated processes. The glutamatergic neuromuscular junction (NMJ) in Drosophila grows new boutons and branches throughout larval development. A primary walking behavior screen followed by a secondary anatomical screen led to the identification of the highwire (hiw) gene. In hiw mutants, the specificity of ...
متن کاملAcetylcholine negatively regulates development of the neuromuscular junction through distinct cellular mechanisms.
Emerging evidence suggests that the neurotransmitter acetylcholine (ACh) negatively regulates the development of the neuromuscular junction, but it is not clear if ACh exerts its effects exclusively through muscle ACh receptors (AChRs). Here, we used genetic methods to remove AChRs selectively from muscle. Similar to the effects of blocking ACh biosynthesis, eliminating postsynaptic AChRs incre...
متن کاملPlum, an Immunoglobulin Superfamily Protein, Regulates Axon Pruning by Facilitating TGF-β Signaling
Axon pruning during development is essential for proper wiring of the mature nervous system, but its regulation remains poorly understood. We have identified an immunoglobulin superfamily (IgSF) transmembrane protein, Plum, that is cell autonomously required for axon pruning of mushroom body (MB) γ neurons and for ectopic synapse refinement at the developing neuromuscular junction in Drosophila...
متن کاملDevelopment of Drosophila larval neuromuscular junctions: maintaining synaptic strength.
In spite of the available information about the development of Drosophila neuromuscular junctions, the correlation between nerve terminal morphology and maintenance of synaptic strength has still not been systematically addressed throughout larval development. We characterized the growth of the abdominal longitudinal muscle 6 (m6) and the motor terminals Ib and Is that innervate it within segme...
متن کامل