Corners in Non-equiregular Sub-riemannian Manifolds

نویسندگان

  • ENRICO LE DONNE
  • GIAN PAOLO LEONARDI
  • ROBERTO MONTI
چکیده

We prove that in a class of non-equiregular sub-Riemannian manifolds corners are not length minimizing. This extends the results of [4]. As an application of our main result we complete and simplify the analysis in [6], showing that in a 4-dimensional subRiemannian structure suggested by Agrachev and Gauthier all length-minimizing curves are smooth.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hausdorff volume in non equiregular sub-Riemannian manifolds

In this paper we study the Hausdorff volume in a non equiregular sub-Riemannian manifold and we compare it with a smooth volume. We first give the Lebesgue decomposition of the Hausdorff volume. Then we study the regular part, show that it is not commensurable with the smooth volume, and give conditions under which it is a Radon measure. We finally give a complete characterization of the singul...

متن کامل

Hausdorff measures and dimensions in non equiregular sub-Riemannian manifolds

This paper is a starting point towards computing the Hausdorff dimension of submanifolds and the Hausdorff volume of small balls in a sub-Riemannian manifold with singular points. We first consider the case of a strongly equiregular submanifold, i.e., a smooth submanifold N for which the growth vector of the distribution D and the growth vector of the intersection of D with TN are constant on N...

متن کامل

ACTION OF SEMISIMPLE ISOMERY GROUPS ON SOME RIEMANNIAN MANIFOLDS OF NONPOSITIVE CURVATURE

A manifold with a smooth action of a Lie group G is called G-manifold. In this paper we consider a complete Riemannian manifold M with the action of a closed and connected Lie subgroup G of the isometries. The dimension of the orbit space is called the cohomogeneity of the action. Manifolds having actions of cohomogeneity zero are called homogeneous. A classic theorem about Riemannian manifolds...

متن کامل

A Geometry Preserving Kernel over Riemannian Manifolds

Abstract- Kernel trick and projection to tangent spaces are two choices for linearizing the data points lying on Riemannian manifolds. These approaches are used to provide the prerequisites for applying standard machine learning methods on Riemannian manifolds. Classical kernels implicitly project data to high dimensional feature space without considering the intrinsic geometry of data points. ...

متن کامل

Intrinsic random walks and sub-Laplacians in sub-Riemannian geometry

On a sub-Riemannian manifold we define two type of Laplacians. The macroscopic Laplacian ∆ω, as the divergence of the horizontal gradient, once a volume ω is fixed, and the microscopic Laplacian, as the operator associated with a sequence of geodesic random walks. We consider a general class of random walks, where all sub-Riemannian geodesics are taken in account. This operator depends only on ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014