Improved testing inference in mixed linear models
نویسندگان
چکیده
Mixed linear models are commonly used in repeated measures studies. They account for the dependence amongst observations obtained from the same experimental unit. Oftentimes, the number of observations is small, and it is thus important to use inference strategies that incorporate small sample corrections. In this paper, we develop modified versions of the likelihood ratio test for fixed effects inference in mixed linear models. In particular, we derive a Bartlett correction to such a test and also to a test obtained from a modified profile likelihood function. Our results generalize those in Zucker et al. (Journal of the Royal Statistical Society B, 2000, 62, 827–838) by allowing the parameter of interest to be vector-valued. Additionally, our Bartlett corrections allow for random effects nonlinear covariance matrix structure. We report numerical evidence which shows that the proposed tests display superior finite sample behavior relative to the standard likelihood ratio test. An application is also presented and discussed.
منابع مشابه
Bayesian Inference for Spatial Beta Generalized Linear Mixed Models
In some applications, the response variable assumes values in the unit interval. The standard linear regression model is not appropriate for modelling this type of data because the normality assumption is not met. Alternatively, the beta regression model has been introduced to analyze such observations. A beta distribution represents a flexible density family on (0, 1) interval that covers symm...
متن کاملTesting for Stochastic Non- Linearity in the Rational Expectations Permanent Income Hypothesis
The Rational Expectations Permanent Income Hypothesis implies that consumption follows a martingale. However, most empirical tests have rejected the hypothesis. Those empirical tests are based on linear models. If the data generating process is non-linear, conventional tests may not assess some of the randomness properly. As a result, inference based on conventional tests of linear models can b...
متن کاملPrediction of toxicity of aliphatic carboxylic acids using adaptive neuro-fuzzy inference system
Toxicity of 38 aliphatic carboxylic acids was studied using non-linear quantitative structure-toxicityrelationship (QSTR) models. The adaptive neuro-fuzzy inference system (ANFIS) was used to construct thenonlinear QSTR models in all stages of study. Two ANFIS models were developed based upon differentsubsets of descriptors. The first one used log ow K and LUMO E as inputs and had good predicti...
متن کاملNusselt Number Estimation along a Wavy Wall in an Inclined Lid-driven Cavity using Adaptive Neuro-Fuzzy Inference System (ANFIS)
In this study, an adaptive neuro-fuzzy inference system (ANFIS) was developed to determine the Nusselt number (Nu) along a wavy wall in a lid-driven cavity under mixed convection regime. Firstly, the main data set of input/output vectors for training, checking and testing of the ANFIS was prepared based on the numerical results of the lattice Boltzmann method (LBM). Then, the ANFIS was develope...
متن کاملRobust MM-Estimation and Inference in Mixed Linear Models
Mixed linear models are used to analyse data in many settings. These models generally rely on the normality assumption and are often fitted by means of the maximum likelihood estimator (MLE) or the restricted maximum likelihood estimator (REML). However, the sensitivity of these estimation techniques and related tests to this underlying assumption has been identified as a weakness that can even...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computational Statistics & Data Analysis
دوره 53 شماره
صفحات -
تاریخ انتشار 2009