Increase in SGLT1-mediated transport explains renal glucose reabsorption during genetic and pharmacological SGLT2 inhibition in euglycemia.

نویسندگان

  • Timo Rieg
  • Takahiro Masuda
  • Maria Gerasimova
  • Eric Mayoux
  • Kenneth Platt
  • David R Powell
  • Scott C Thomson
  • Hermann Koepsell
  • Volker Vallon
چکیده

In the kidney, the sodium-glucose cotransporters SGLT2 and SGLT1 are thought to account for >90 and ∼3% of fractional glucose reabsorption (FGR), respectively. However, euglycemic humans treated with an SGLT2 inhibitor maintain an FGR of 40-50%, mimicking values in Sglt2 knockout mice. Here, we show that oral gavage with a selective SGLT2 inhibitor (SGLT2-I) dose dependently increased urinary glucose excretion (UGE) in wild-type (WT) mice. The dose-response curve was shifted leftward and the maximum response doubled in Sglt1 knockout (Sglt1-/-) mice. Treatment in diet with the SGLT2-I for 3 wk maintained 1.5- to 2-fold higher urine glucose/creatinine ratios in Sglt1-/- vs. WT mice, associated with a temporarily greater reduction in blood glucose in Sglt1-/- vs. WT after 24 h (-33 vs. -11%). Subsequent inulin clearance studies under anesthesia revealed free plasma concentrations of the SGLT2-I (corresponding to early proximal concentration) close to the reported IC50 for SGLT2 in mice, which were associated with FGR of 64 ± 2% in WT and 17 ± 2% in Sglt1-/-. Additional intraperitoneal application of the SGLT2-I (maximum effective dose in metabolic cages) increased free plasma concentrations ∼10-fold and reduced FGR to 44 ± 3% in WT and to -1 ± 3% in Sglt1-/-. The absence of renal glucose reabsorption was confirmed in male and female Sglt1/Sglt2 double knockout mice. In conclusion, SGLT2 and SGLT1 account for renal glucose reabsorption in euglycemia, with 97 and 3% being reabsorbed by SGLT2 and SGLT1, respectively. When SGLT2 is fully inhibited by SGLT2-I, the increase in SGLT1-mediated glucose reabsorption explains why only 50-60% of filtered glucose is excreted.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Use of systems pharmacology modeling to elucidate the operating characteristics of SGLT1 and SGLT2 in renal glucose reabsorption in humans

In the kidney, glucose in glomerular filtrate is reabsorbed primarily by sodium-glucose cotransporters 1 (SGLT1) and 2 (SGLT2) along the proximal tubules. SGLT2 has been characterized as a high capacity, low affinity pathway responsible for reabsorption of the majority of filtered glucose in the early part of proximal tubules, and SGLT1 reabsorbs the residual glucose in the distal part. Inhibit...

متن کامل

Molecular determinants of renal glucose reabsorption. Focus on "Glucose transport by human renal Na+/D-glucose cotransporters SGLT1 and SGLT2".

ABOUT 180 g of glucose are filtered daily in the glomeruli of the kidneys in a healthy normoglycemic subject, which is equivalent to approximately one third of the total energy consumed by the human body in a day. Most of the glucose entering the tubular system is reabsorbed along the nephron segments, primarily in the proximal tubule, such that urine is almost free of glucose. This is differen...

متن کامل

In vitro-in vivo correlation of the inhibition potency of sodium-glucose cotransporter inhibitors in rat: a pharmacokinetic and pharmacodynamic modeling approach.

To evaluate the relationship between the in vitro and in vivo potency of sodium-glucose cotransporter (SGLT) inhibitors, a pharmacokinetic and pharmacodynamic (PK-PD) study was performed using normal rats. A highly selective SGLT2 inhibitor, tofogliflozin, and four other inhibitors with different in vitro inhibition potency to SGLT2 and selectivity toward SGLT2, versus SGLT1 were used as test c...

متن کامل

Interaction of the Sodium/Glucose Cotransporter (SGLT) 2 Inhibitor Canagliflozin with SGLT1 and SGLT2: Inhibition Kinetics, Sidedness of Action, and Transporter-Associated Incorporation Accounting for its Pharmacodynamic and Pharmacokinetic Features

Canagliflozin, a selective sodium/glucose cotransporter (SGLT) 2 inhibitor, suppresses the renal reabsorption of glucose and decreases blood glucose level in patients with type 2 diabetes. A characteristic of canagliflozin is its modest SGLT1 inhibitory action in the intestine at clinical dosage. To reveal its mechanism of action, we investigated the interaction of canagliflozin with SGLT1 and ...

متن کامل

LP-925219 maximizes urinary glucose excretion in mice by inhibiting both renal SGLT1 and SGLT2

Sodium-glucose cotransporter 2 (SGLT2) inhibitors are a new class of oral anti-diabetic agents that improve glycemic control by inhibiting SGLT2-mediated renal glucose reabsorption. Currently available agents increase urinary glucose excretion (UGE) to <50% of maximal values because they do not inhibit SGLT1, which reabsorbs >50% of filtered glucose when SGLT2 is completely inhibited. This led ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Renal physiology

دوره 306 2  شماره 

صفحات  -

تاریخ انتشار 2014