A New Collocation Scheme Using Non-polynomial Basis Functions
نویسندگان
چکیده
In this paper, we construct a set of non-polynomial basis functions from a generalised Birkhoff interpolation problem involving the operator: Lλ = d2/dx2 − λ2 with constant λ. With a direct inverting the operator, the basis can be pre-computed in a fast and stable manner. This leads to new collocation schemes for general second-order boundary value problems with (i) the matrix corresponding to the operatorLλ being identity; (ii) wellconditioned linear systems and (iii) exact imposition of various boundary conditions. This also provides efficient solvers for time-dependent nonlinear problems. Moreover, we can show that the new basis has the approximability to general functions in Sobolev spaces as good as orthogonal polynomials.
منابع مشابه
A Third-degree B-spline Collocation Scheme for Solving a Class of the Nonlinear Lane–-Emden Type Equations
In this paper, we use a numerical method involving collocation method with third B-splines as basis functions for solving a class of singular initial value problems (IVPs) of Lane--Emden type equation. The original differential equation is modified at the point of singularity. The modified problem is then treated by using B-spline approximation. In the case of non-linear problems, we first line...
متن کاملA Well-Conditioned Collocation Method Using a Pseudospectral Integration Matrix
In this paper, a well-conditioned collocation method is constructed for solving general p-th order linear differential equations with various types of boundary conditions. Based on a suitable Birkhoff interpolation, we obtain a new set of polynomial basis functions that results in a collocation scheme with two important features: the condition number of the linear system is independent of the n...
متن کاملA numerical solution of mixed Volterra Fredholm integral equations of Urysohn type on non-rectangular regions using meshless methods
In this paper, we propose a new numerical method for solution of Urysohn two dimensional mixed Volterra-Fredholm integral equations of the second kind on a non-rectangular domain. The method approximates the solution by the discrete collocation method based on inverse multiquadric radial basis functions (RBFs) constructed on a set of disordered data. The method is a meshless method, because it ...
متن کاملApplication of linear combination between cubic B-spline collocation methods with different basis for solving the KdV equation
In the present article, a numerical method is proposed for the numerical solution of the KdV equation by using a new approach by combining cubic B-spline functions. In this paper we convert the KdV equation to system of two equations. The method is shown to be unconditionally stable using von-Neumann technique. To test accuracy the error norms L2, L∞ are computed. Three invariants of motion are...
متن کاملA numerical scheme for space-time fractional advection-dispersion equation
In this paper, we develop a numerical resolution of the space-time fractional advection-dispersion equation. We utilize spectral-collocation method combining with a product integration technique in order to discretize the terms involving spatial fractional order derivatives that leads to a simple evaluation of the related terms. By using Bernstein polynomial basis, the problem is transformed in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Sci. Comput.
دوره 70 شماره
صفحات -
تاریخ انتشار 2017