AT2 receptors cross talk with AT1 receptors through a nitric oxide- and RhoA-dependent mechanism resulting in decreased phospholipase D activity.

نویسندگان

  • Bradley T Andresen
  • Kuntala Shome
  • Edwin K Jackson
  • Guillermo G Romero
چکیده

ANG II activation of phospholipase D (PLD) is required for ERK and NAD(P)H oxidase activation, both of which are involved in hypertension. Previous findings demonstrate that ANG II stimulates PLD activity through AT(1) receptors in a RhoA-dependent mechanism. Additionally, endogenous AT(2) receptors in preglomerular smooth muscle cells attenuate ANG II-mediated PLD activity. In the present study, we examined the signal transduction mechanisms used by endogenous AT(2) receptors to modulate ANG II-induced PLD activity through either PLA(2) generation of lysophosphatidylethanolamine or Galpha(i)-mediated generation of nitric oxide (NO) and interaction with RhoA. Blockade of AT(2) receptors, Galpha(i) and NO synthase, but not PLA(2), enhanced ANG II-mediated PLD activity in cells rich in, but not poor in, AT(2) receptors. Moreover, NO donors, a direct activator of guanylyl cyclase and a cGMP analog, but not lysophosphatidylethanolamine, inhibited ANG II-mediated PLD activity, whereas an inhibitor of guanylyl cyclase augmented ANG II-induced PLD activity. AT(2) receptor- and NO-mediated attenuation of ANG II-induced PLD activity was completely lost in cells transfected with S188A RhoA, which cannot be phosphorylated on serine 188. Therefore, our data indicate that AT(2) receptors activate Galpha(i), subsequently stimulating NO synthase and leading to increased soluble guanylyl cyclase activity, generation of cGMP, and activation of a protein kinase, resulting in phosphorylation of RhoA on serine 188. Furthermore, because AT(2) receptors inhibit AT(1) receptor signaling to PLD via modulating RhoA activity, AT(2) receptor signaling can potentially regulate multiple vasoconstrictive signaling systems through inactivating RhoA.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

COVID-19: a hypothesis to prevent SARS-CoV-2 from entering respiratory cells

Coronaviruses (CoVs) are a group of viruses that induce infection in the respiratory and other systems in the human body. There are two coronaviruses that transmitted from animals to humans including severe acute respiratory syndrome (SARS) and the Middle East respiratory syndrome (MERS) (1). The novel coronavirus that appeared at first in Wuhan, China, in December 2019 was named as severe acut...

متن کامل

Cross-talk between angiotensin II receptor types 1 and 2: potential role in vascular remodeling in humans.

Angiotensin (Ang) II exerts its important physiological functions through 2 distinct receptor subtypes, the type 1 (AT1) and type 2 (AT2) receptors.1 The AT1 receptor is expressed in diverse adult tissues, and its distribution is indicative of the fundamental role of Ang II on the regulation of cardiovascular and renal homeostasis. The predominant actions of Ang II, such as vasoconstriction, ce...

متن کامل

International Union of Pharmacology. XXIII. The Angiotensin II Receptors

—The cardiovascular and other actions of angiotensin II (Ang II) are mediated by AT1 and AT2 receptors, which are seven transmembrane glycoproteins with 30% sequence similarity. Most species express a single autosomal AT1 gene, but two related AT1A and AT1B receptor genes are expressed in rodents. AT1 receptors are predominantly coupled to Gq/ 11, and signal through phospholipases A, C, D, inos...

متن کامل

Angiotensin II AT2 receptors inhibit proximal tubular Na+-K+-ATPase activity via a NO/cGMP-dependent pathway.

Angiotensin II AT2 receptors act as a functional antagonist for the AT1 receptors in various tissues. We previously reported that activation of the renal AT2 receptors promotes natriuresis and diuresis; however, the mechanism is not known. The present study was designed to investigate whether activation of AT2 receptors affects the activity of Na+-K+-ATPase (NKA), an active tubular sodium trans...

متن کامل

Angiotensin AT2 receptors directly stimulate renal nitric oxide in bradykinin B2-receptor-null mice.

Both bradykinin B2 and angiotensin II type 2 (AT2) receptors are known to stimulate renal production of nitric oxide (NO). To evaluate the individual contributions of AT2 and B2 receptors to renal NO production, we monitored renal interstitial, stable NO metabolites and cGMP by a microdialysis technique in conscious, bradykinin B2-null and wild-type mice (n=8 in each group) during low sodium in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Renal physiology

دوره 288 4  شماره 

صفحات  -

تاریخ انتشار 2005