Learning Quadratic Variance Function (QVF) DAG models via OverDispersion Scoring (ODS)
نویسندگان
چکیده
Learning DAG or Bayesian network models is an important problem in multi-variate causal inference. However, a number of challenges arises in learning large-scale DAG models including model identifiability and computational complexity since the space of directed graphs is huge. In this paper, we address these issues in a number of steps for a broad class of DAG models where the noise or variance is signal-dependent. Firstly we introduce a new class of identifiable DAG models, where each node has a distribution where the variance is a quadratic function of the mean (QVF DAG models). Our QVF DAG models include many interesting classes of distributions such as Poisson, Binomial, Geometric, Exponential, Gamma and many other distributions in which the noise variance depends on the mean. We prove that this class of QVF DAG models is identifiable, and introduce a new algorithm, the OverDispersion Scoring (ODS) algorithm, for learning large-scale QVF DAG models. Our algorithm is based on firstly learning the moralized or undirected graphical model representation of the DAG to reduce the DAG search-space, and then exploiting the quadratic variance property to learn the causal ordering. We show through theoretical results and simulations that our algorithm is statistically consistent in the highdimensional p > n setting provided that the degree of the moralized graph is bounded and performs well compared to state-of-the-art DAG-learning algorithms.
منابع مشابه
Learning Large-Scale Poisson DAG Models based on OverDispersion Scoring
In this paper, we address the question of identifiability and learning algorithms for large-scale Poisson Directed Acyclic Graphical (DAG) models. We define general Poisson DAG models as models where each node is a Poisson random variable with rate parameter depending on the values of the parents in the underlying DAG. First, we prove that Poisson DAG models are identifiable from observational ...
متن کاملUnifying the Named Natural Exponential Families and Their Relatives
Five of the six univariate natural exponential families (NEF) with quadratic variance functions (QVF), meaning their variances are at most quadratic functions of their means, are the Normal, Poisson, Gamma, Binomial, and Negative Binomial distributions. The sixth is the NEFCHS, the NEF generated from convolved Hyperbolic Secant distributions. These six NEF-QVFs and their relatives are unified i...
متن کاملEmpirical Bayes Estimators with Uncertainty Measures for NEF-QVF Populations
The paper proposes empirical Bayes (EB) estimators for simultaneous estimation of means in the natural exponential family (NEF) with quadratic variance functions (QVF) models. Morris (1982, 1983a) characterized the NEF-QVF distributions which include among others the binomial, Poisson and normal distributions. In addition to the EB estimators, we provide approximations to the MSE’s of t...
متن کاملDethroning the Fano Factor: A Flexible, Model-Based Approach to Partitioning Neural Variability.
Neurons in many brain areas exhibit high trial-to-trial variability, with spike counts that are overdispersed relative to a Poisson distribution. Recent work (Goris, Movshon, & Simoncelli, 2014 ) has proposed to explain this variability in terms of a multiplicative interaction between a stochastic gain variable and a stimulus-dependent Poisson firing rate, which produces quadratic relationships...
متن کاملImproved Natural Language Learning via Variance-Regularization Support Vector Machines
We present a simple technique for learning better SVMs using fewer training examples. Rather than using the standard SVM regularization, we regularize toward low weight-variance. Our new SVM objective remains a convex quadratic function of the weights, and is therefore computationally no harder to optimize than a standard SVM. Variance regularization is shown to enable dramatic improvements in ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1704.08783 شماره
صفحات -
تاریخ انتشار 2017